Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 2, Pages 94–98
DOI: https://doi.org/10.4213/faa3269
(Mi faa3269)
 

Brief communications

Elements of Potential Theory on Carnot Groups

M. V. Ruzhanskya, D. Suraganba

a Imperial College, London, United Kingdom
b Institute of Mathematics and Mathematical Modelling, Almaty, Kazakhstan
References:
Abstract: We propose and study elements of potential theory for the sub-Laplacian on homogeneous Carnot groups. In particular, we show the continuity of the single-layer potential and establish Plemelj-type jump relations for the double-layer potential. As a consequence, we derive a formula for the trace on smooth surfaces of the Newton potential for the sub-Laplacian. Using this, we construct a sub-Laplacian version of Kac's boundary value problem.
Keywords: sub-Laplacian, integral boundary condition, homogeneous Carnot group, Newton potential, layer potentials.
Funding agency Grant number
Engineering and Physical Sciences Research Council EP/K039407/1
Leverhulme Trust RPG-2014-02
Ministry of Education and Science of the Republic of Kazakhstan AP05130981
The authors were supported in part by EPSRC grant EP/K039407/1, by Leverhulme Grant RPG-2014-02, and by MESRK grant AP05130981.
Received: 10.02.2017
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 2, Pages 158–161
DOI: https://doi.org/10.1007/s10688-018-0224-5
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: M. V. Ruzhansky, D. Suragan, “Elements of Potential Theory on Carnot Groups”, Funktsional. Anal. i Prilozhen., 52:2 (2018), 94–98; Funct. Anal. Appl., 52:2 (2018), 158–161
Citation in format AMSBIB
\Bibitem{RuzSur18}
\by M.~V.~Ruzhansky, D.~Suragan
\paper Elements of Potential Theory on Carnot Groups
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 2
\pages 94--98
\mathnet{http://mi.mathnet.ru/faa3269}
\crossref{https://doi.org/10.4213/faa3269}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799418}
\elib{https://elibrary.ru/item.asp?id=32837056}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 2
\pages 158--161
\crossref{https://doi.org/10.1007/s10688-018-0224-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437825500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049597528}
Linking options:
  • https://www.mathnet.ru/eng/faa3269
  • https://doi.org/10.4213/faa3269
  • https://www.mathnet.ru/eng/faa/v52/i2/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024