Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2016, Volume 50, Issue 3, Pages 90–96
DOI: https://doi.org/10.4213/faa3247
(Mi faa3247)
 

This article is cited in 7 scientific papers (total in 7 papers)

Brief communications

Homogenization of Schrödinger-Type equations

T. A. Suslina

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (208 kB) Citations (7)
References:
Abstract: We consider a self-adjoint elliptic operator $A_\varepsilon$, $\varepsilon >0$, on $L_2({\mathbb R}^d;{\mathbb C}^n)$ given by the differential expression $b({\mathbf D})^* g({\mathbf x}/\varepsilon)b({\mathbf D})$. Here $b({\mathbf D})=\sum_{j=1}^d b_j D_j$ is a first-order matrix differential operator such that the symbol $b(\boldsymbol{\xi})$ has maximal rank. The matrix-valued function $g({\mathbf x})$ is bounded, positive definite, and periodic with respect to some lattice. We study the operator exponential $e^{- i \tau A_\varepsilon}$, where $\tau \in {\mathbb R}$. It is shown that, as $\varepsilon \to 0$, the operator $e^{- i \tau A_\varepsilon}$ converges to $e^{- i \tau A^0}$ in the norm of operators acting from the Sobolev space $H^s({\mathbb R}^d;{\mathbb C}^n)$ (with suitable $s$) to $L_2({\mathbb R}^d;{\mathbb C}^n)$. Here $A^0$ is the effective operator with constant coefficients. Order-sharp error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation $i \partial_\tau {\mathbf u}_\varepsilon ({\mathbf x}, \tau)=A_\varepsilon {\mathbf u}_\varepsilon({\mathbf x}, \tau)$.
Keywords: periodic differential operators, Schrödinger-type equation, homogenization, operator error estimates.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00087
Supported by the Russian Foundation for Basic Research (project no. 16-01-00087).
Received: 10.05.2016
English version:
Functional Analysis and Its Applications, 2016, Volume 50, Issue 3, Pages 241–246
DOI: https://doi.org/10.1007/s10688-016-0154-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. A. Suslina, “Homogenization of Schrödinger-Type equations”, Funktsional. Anal. i Prilozhen., 50:3 (2016), 90–96; Funct. Anal. Appl., 50:3 (2016), 241–246
Citation in format AMSBIB
\Bibitem{Sus16}
\by T.~A.~Suslina
\paper Homogenization of Schr\"odinger-Type equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2016
\vol 50
\issue 3
\pages 90--96
\mathnet{http://mi.mathnet.ru/faa3247}
\crossref{https://doi.org/10.4213/faa3247}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646722}
\elib{https://elibrary.ru/item.asp?id=27349844}
\transl
\jour Funct. Anal. Appl.
\yr 2016
\vol 50
\issue 3
\pages 241--246
\crossref{https://doi.org/10.1007/s10688-016-0154-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384420000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84988431131}
Linking options:
  • https://www.mathnet.ru/eng/faa3247
  • https://doi.org/10.4213/faa3247
  • https://www.mathnet.ru/eng/faa/v50/i3/p90
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:554
    Full-text PDF :135
    References:83
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024