Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2016, Volume 50, Issue 3, Pages 85–90
DOI: https://doi.org/10.4213/faa3246
(Mi faa3246)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Diffusion processes on the Thoma cone

G. I. Olshanskiab

a Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b National Research University Higher School of Economics, Moscow, Russia
Full-text PDF (190 kB) Citations (1)
References:
Abstract: The Thoma cone is a certain infinite-dimensional space that arises in the representation theory of the infinite symmetric group. The present note is a continuation of a paper by A. M. Borodin and the author (Electr. J. Probab. 18 (2013), no. 75), where a 2-parameter family of continuous-time Markov processes on the Thoma cone was constructed. The purpose of the note is to show that these processes are diffusions.
Keywords: infinite symmetric group, Thoma simplex, Thoma cone, symmetric functions, diffusion processes.
Funding agency Grant number
Russian Science Foundation 14-50-00150
The present research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation (project 14-50-00150).
Received: 16.05.2016
English version:
Functional Analysis and Its Applications, 2016, Volume 50, Issue 3, Pages 237–240
DOI: https://doi.org/10.1007/s10688-016-0153-0
Bibliographic databases:
Document Type: Article
UDC: 519.217.4
Language: Russian
Citation: G. I. Olshanski, “Diffusion processes on the Thoma cone”, Funktsional. Anal. i Prilozhen., 50:3 (2016), 85–90; Funct. Anal. Appl., 50:3 (2016), 237–240
Citation in format AMSBIB
\Bibitem{Ols16}
\by G.~I.~Olshanski
\paper Diffusion processes on the Thoma cone
\jour Funktsional. Anal. i Prilozhen.
\yr 2016
\vol 50
\issue 3
\pages 85--90
\mathnet{http://mi.mathnet.ru/faa3246}
\crossref{https://doi.org/10.4213/faa3246}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646721}
\elib{https://elibrary.ru/item.asp?id=27349842}
\transl
\jour Funct. Anal. Appl.
\yr 2016
\vol 50
\issue 3
\pages 237--240
\crossref{https://doi.org/10.1007/s10688-016-0153-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384420000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84988311523}
Linking options:
  • https://www.mathnet.ru/eng/faa3246
  • https://doi.org/10.4213/faa3246
  • https://www.mathnet.ru/eng/faa/v50/i3/p85
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :81
    References:73
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024