Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2000, Volume 34, Issue 4, Pages 18–34
DOI: https://doi.org/10.4213/faa323
(Mi faa323)
 

This article is cited in 18 scientific papers (total in 18 papers)

Theta Function Solutions of the Schlesinger System and the Ernst Equation

D. A. Korotkina, V. B. Matveevb

a Concordia University, Department of Mathematics and Statistics
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: We establish a link between the Schlesinger system and the Ernst equation (the stationary axisymmetric Einstein equation) on the level of algebro-geometric solutions. We calculate all metric coefficients corresponding to general algebro-geometric solutions of the Ernst equation.
Received: 26.04.1999
English version:
Functional Analysis and Its Applications, 2000, Volume 34, Issue 4, Pages 252–264
DOI: https://doi.org/10.1023/A:1004153222818
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: D. A. Korotkin, V. B. Matveev, “Theta Function Solutions of the Schlesinger System and the Ernst Equation”, Funktsional. Anal. i Prilozhen., 34:4 (2000), 18–34; Funct. Anal. Appl., 34:4 (2000), 252–264
Citation in format AMSBIB
\Bibitem{KorMat00}
\by D.~A.~Korotkin, V.~B.~Matveev
\paper Theta Function Solutions of the Schlesinger System and the Ernst Equation
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 4
\pages 18--34
\mathnet{http://mi.mathnet.ru/faa323}
\crossref{https://doi.org/10.4213/faa323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1818282}
\zmath{https://zbmath.org/?q=an:0976.83011}
\elib{https://elibrary.ru/item.asp?id=13831115}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 4
\pages 252--264
\crossref{https://doi.org/10.1023/A:1004153222818}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166603100002}
Linking options:
  • https://www.mathnet.ru/eng/faa323
  • https://doi.org/10.4213/faa323
  • https://www.mathnet.ru/eng/faa/v34/i4/p18
  • This publication is cited in the following 18 articles:
    1. Korotkin D., “Bergman Tau-Function: From Einstein Equations and Dubrovin-Frobenius Manifolds to Geometry of Moduli Spaces”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, eds. Donagi R., Shaska T., Cambridge Univ Press, 2020, 215–287  isi
    2. Lenells J., Pei L., “Exact Solution of a Neumann Boundary Value Problem For the Stationary Axisymmetric Einstein Equations”, J. Nonlinear Sci., 29:4 (2019), 1621–1657  crossref  mathscinet  isi
    3. Mathew Baxter, Robert A Van Gorder, “Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields”, Phys. Scr., 87:3 (2013), 035005  crossref
    4. Brezhnev Yu.V., “Spectral/Quadrature Duality: Picard-Vessiot Theory and Finite-Gap Potentials”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, ed. AcostaHumanez P. Finkel F. Kamran N. Olver P., Amer Mathematical Soc, 2012, 1–31  crossref  mathscinet  zmath  isi
    5. Lenells J., “Boundary Value Problems for the Stationary Axisymmetric Einstein Equations: A Disk Rotating Around a Black Hole”, Comm Math Phys, 304:3 (2011), 585–635  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. Matveev, VB, “30 years of finite-gap integration theory”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366:1867 (2008), 837  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. A. Doliwa, M. Nieszporski, P. M. Santini, “Integrable lattices and their sublattices. II. From the B-quadrilateral lattice to the self-adjoint schemes on the triangular and the honeycomb lattices”, Journal of Mathematical Physics, 48:11 (2007)  crossref
    8. Christian Klein, Lecture Notes in Physics, 685, Ernst Equation and Riemann Surfaces, 2005, 237  crossref
    9. Karas, V, “Gravitating discs around black holes”, Classical and Quantum Gravity, 21:7 (2004), R1  crossref  mathscinet  zmath  adsnasa  isi  scopus
    10. Katsnelson V., Volok D., “Rational solutions of the Schlesinger system and isoprincipal deformations of rational matrix functions I”, Current Trends in Operator Theory and its Applications, Operator Theory : Advances and Applications, 149, 2004, 291–348  mathscinet  zmath  isi
    11. C. Klein, “Isomonodromy Approach to Boundary Value Problems for the Ernst Equation”, Theoret. and Math. Phys., 134:1 (2003), 72–85  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. C. Klein, “The Kerr Solution on Partially Degenerate Hyperelliptic Riemann Surfaces”, Theoret. and Math. Phys., 137:2 (2003), 1520–1526  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. Klein, C, “On explicit solutions to the stationary axisymmetric Einstein-Maxwell equations describing dust disks”, Annalen der Physik, 12:10 (2003), 599  crossref  mathscinet  zmath  adsnasa  isi  scopus
    14. Klein, C, “Exact relativistic treatment of stationary black-hole-disk systems”, Physical Review D, 68:2 (2003), 027501  crossref  mathscinet  adsnasa  isi  scopus
    15. C. Klein, “On explicit solutions to the stationary axisymmetric Einstein‐Maxwell equations describing dust disks”, Annalen der Physik, 515:10 (2003), 599  crossref
    16. Klein, C, “Ernst equation, Fay identities and variational formulas on hyperelliptic curves”, Mathematical Research Letters, 9:1 (2002), 27  crossref  mathscinet  zmath  isi  scopus
    17. Frauendiener J., Klein C., “Exact relativistic treatment of stationary counterrotating dust disks: Physical properties”, Physical Review D, 63:8 (2001), 084025  crossref  mathscinet  adsnasa  isi
    18. Klein C., “Exact relativistic treatment of stationary counterrotating dust disks: Boundary value problems and solutions”, Physical Review D, 63:6 (2001), 064033  crossref  mathscinet  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:880
    Full-text PDF :306
    References:101
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025