Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2000, Volume 34, Issue 4, Pages 1–17
DOI: https://doi.org/10.4213/faa322
(Mi faa322)
 

This article is cited in 18 scientific papers (total in 18 papers)

Operator Ergodic Theorems for Actions of Free Semigroups and Groups

A. I. Bufetov

Independent University of Moscow
References:
Abstract: New ergodic theorems are obtained for measure-preserving actions of free semigroups and groups. These theorems are derived from ergodic theorems for Markov operators. This approach also allows one to obtain ergodic theorems for some classes of Markov semigroups. Results of the paper generalize classical ergodic theorems of Kakutani, Oseledets, and Guivarc'h, and recent ergodic theorems of Grigorchuk, Nevo, and Nevo and Stein.
Received: 26.05.1999
English version:
Functional Analysis and Its Applications, 2000, Volume 34, Issue 4, Pages 239–251
DOI: https://doi.org/10.1023/A:1004116205980
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. I. Bufetov, “Operator Ergodic Theorems for Actions of Free Semigroups and Groups”, Funktsional. Anal. i Prilozhen., 34:4 (2000), 1–17; Funct. Anal. Appl., 34:4 (2000), 239–251
Citation in format AMSBIB
\Bibitem{Buf00}
\by A.~I.~Bufetov
\paper Operator Ergodic Theorems for Actions of Free Semigroups and Groups
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 4
\pages 1--17
\mathnet{http://mi.mathnet.ru/faa322}
\crossref{https://doi.org/10.4213/faa322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1818281}
\zmath{https://zbmath.org/?q=an:0983.22006}
\elib{https://elibrary.ru/item.asp?id=5021298}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 4
\pages 239--251
\crossref{https://doi.org/10.1023/A:1004116205980}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166603100001}
Linking options:
  • https://www.mathnet.ru/eng/faa322
  • https://doi.org/10.4213/faa322
  • https://www.mathnet.ru/eng/faa/v34/i4/p1
  • This publication is cited in the following 18 articles:
    1. Jorge Fariña-Asategui, “Cyclicity, hypercyclicity and randomness in self-similar groups”, Monatsh Math, 2025  crossref
    2. A. I. Bufetov, A. V. Klimenko, C. Series, “An ergodic theorem for actions of Fuchsian groups”, Russian Math. Surveys, 78:3 (2023), 566–568  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Anush Tserunyan, “Pointwise ergodic theorem for locally countable quasi-pmp graphs”, JMD, 18 (2022), 609  crossref
    4. Elias Zimmermann, “Fiber entropy and algorithmic complexity of random orbits”, DCDS, 42:11 (2022), 5289  crossref
    5. Alexander I. Bufetov, Alexey Klimenko, Caroline Series, “A symmetric Markov coding and the ergodic theorem for actions of Fuchsian Groups”, Mathematics Research Reports, 1 (2020), 5–14  mathnet  crossref
    6. Rahimi M., “Entropy of Action of Semi-Groups”, Iran. J. Sci. Technol. Trans. A-Sci., 41:A1 (2017), 179–183  crossref  mathscinet  zmath  isi  scopus
    7. Bowen L., Bufetov A., Romaskevich O., “Mean convergence of Markovian spherical averages for measure-preserving actions of the free group”, Geod. Dedic., 181:1 (2016), 293–306  crossref  mathscinet  zmath  isi  scopus
    8. Bowen L., Nevo A., “Von Neumann and Birkhoff Ergodic Theorems For Negatively Curved Groups”, Ann. Sci. Ec. Norm. Super., 48:5 (2015), 1113–1147  crossref  mathscinet  zmath  isi
    9. A. I. Bufetov, A. V. Klimenko, “Maximal inequality and ergodic theorems for Markov groups”, Proc. Steklov Inst. Math., 277 (2012), 27–42  mathnet  crossref  mathscinet  isi  elib  elib
    10. Bufetov A., Klimenko A., “On Markov Operators and Ergodic Theorems for Group Actions”, Eur. J. Comb., 33:7, SI (2012), 1427–1443  crossref  mathscinet  zmath  isi  elib  scopus
    11. Bufetov A.I., Khristoforov M., Klimenko A., “Cesaro Convergence of Spherical Averages for Measure-Preserving Actions of Markov Semigroups and Groups”, Int. Math. Res. Notices, 2012, no. 21, 4797–4829  crossref  mathscinet  zmath  isi  elib  scopus
    12. G. Ya. Grabarnik, A. A. Katz, L. A. Shwartz, “On non-commutative ergodic type theorems for free finitely generated semigroups”, Vladikavk. matem. zhurn., 9:1 (2007), 38–47  mathnet  mathscinet  elib
    13. Anantharaman-Delaroche, C, “On ergodic theorems for free group actions on noncommutative spaces”, Probability Theory and Related Fields, 135:4 (2006), 520  crossref  mathscinet  zmath  isi  scopus
    14. Amos Nevo, Handbook of Dynamical Systems, 1, 2006, 871  crossref
    15. Arnold's Problems, 2005, 181  crossref
    16. Bufetov, AI, “Convergence of spherical averages for actions of free groups”, Annals of Mathematics, 155:3 (2002), 929  crossref  mathscinet  zmath  isi  scopus
    17. A. M. Vershik, “Dynamic theory of growth in groups: Entropy, boundaries, examples”, Russian Math. Surveys, 55:4 (2000), 667–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. R. I. Grigorchuk, “An Ergodic Theorem for the Action of a Free Semigroup”, Proc. Steklov Inst. Math., 231 (2000), 113–127  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:825
    Full-text PDF :301
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025