Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 4, Pages 79–82
DOI: https://doi.org/10.4213/faa3216
(Mi faa3216)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

On a Criterion for the Complete Continuity of the Fréchet Derivative

N. A. Yerzakova

Moscow State Technical University of Civil Aviation
Full-text PDF (144 kB) Citations (1)
References:
Abstract: In this paper we introduce, by means of the Hausdorff measure of noncompactness $\chi$, two new classes of operators (not necessarily linear): operators locally strongly $\chi$-condensing at a point and operators strongly $\chi$-condensing at infinity (on spherical interlayers). These classes include all completely continuous operators and some noncondensing operators. Necessary and sufficient conditions for the complete continuity of a Fréchet derivative at a point and of an asymptotic derivative (if they exist) are proved. M. A. Krasnoselżskii's theorem on asymptotic bifurcation points for completely continuous vector fields is generalized to the class of vector fields strongly $\chi$-condensing at infinity.
Keywords: Hausdorff measure of noncompactness, condensing maps, Fréchet derivative, asymptotically linear operator, bifurcation point, rotation of vector fields, Hammerstein operator, Lebesgue spaces.
Received: 01.09.2014
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 4, Pages 304–306
DOI: https://doi.org/10.1007/s10688-015-0119-7
Bibliographic databases:
Document Type: Article
UDC: 517.988.63+517.988.521
Language: Russian
Citation: N. A. Yerzakova, “On a Criterion for the Complete Continuity of the Fréchet Derivative”, Funktsional. Anal. i Prilozhen., 49:4 (2015), 79–82; Funct. Anal. Appl., 49:4 (2015), 304–306
Citation in format AMSBIB
\Bibitem{Yer15}
\by N.~A.~Yerzakova
\paper On a Criterion for the Complete Continuity of the Fr\'echet Derivative
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 4
\pages 79--82
\mathnet{http://mi.mathnet.ru/faa3216}
\crossref{https://doi.org/10.4213/faa3216}
\elib{https://elibrary.ru/item.asp?id=24849984}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 4
\pages 304--306
\crossref{https://doi.org/10.1007/s10688-015-0119-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366636400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949941411}
Linking options:
  • https://www.mathnet.ru/eng/faa3216
  • https://doi.org/10.4213/faa3216
  • https://www.mathnet.ru/eng/faa/v49/i4/p79
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024