Abstract:
We consider the Dirichlet problem for the equation −Δp=uq−1 with p-Laplacian in a thin spherical annulus in Rn with 1<p<q<p∗n−1, where p∗n−1 is the critical Sobolev exponent
for embedding in Rn−1 and either n=4 or n⩾6. We prove that this problem has a countable set of solutions concentrated in neighborhoods of certain curves. Any two such solutions are nonequivalent if the annulus is thin enough. As a corollary, we prove that the considered problem has as many solutions as required, provided that the annulus is thin enough.
Citation:
S. B. Kolonitskii, “Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with p-Laplacian”, Funktsional. Anal. i Prilozhen., 49:2 (2015), 88–92; Funct. Anal. Appl., 49:2 (2015), 151–154
\Bibitem{Kol15}
\by S.~B.~Kolonitskii
\paper Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 2
\pages 88--92
\mathnet{http://mi.mathnet.ru/faa3193}
\crossref{https://doi.org/10.4213/faa3193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3374908}
\zmath{https://zbmath.org/?q=an:06486278}
\elib{https://elibrary.ru/item.asp?id=24849958}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 2
\pages 151--154
\crossref{https://doi.org/10.1007/s10688-015-0099-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356443000011}
\elib{https://elibrary.ru/item.asp?id=23988823}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935872674}
Linking options:
https://www.mathnet.ru/eng/faa3193
https://doi.org/10.4213/faa3193
https://www.mathnet.ru/eng/faa/v49/i2/p88
This publication is cited in the following 1 articles:
D. E. Apushkinskaya, A. A. Arkhipova, A. I. Nazarov, V. G. Osmolovskii, N. N. Uraltseva, “A Survey of Results of St. Petersburg State University Research School on Nonlinear Partial Differential Equations. I”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 1