Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 2, Pages 88–92
DOI: https://doi.org/10.4213/faa3193
(Mi faa3193)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian

S. B. Kolonitskii

St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (164 kB) Citations (1)
References:
Abstract: We consider the Dirichlet problem for the equation $-\Delta_p = u^{q-1}$ with $p$-Laplacian in a thin spherical annulus in $\mathbb R^n$ with $1 < p < q < p^*_{n-1}$, where $p^*_{n-1}$ is the critical Sobolev exponent for embedding in $\mathbb R^{n-1}$ and either $n=4$ or $n \ge 6$. We prove that this problem has a countable set of solutions concentrated in neighborhoods of certain curves. Any two such solutions are nonequivalent if the annulus is thin enough. As a corollary, we prove that the considered problem has as many solutions as required, provided that the annulus is thin enough.
Keywords: $p$-Laplacian, multiplicity of solutions.
Funding agency Grant number
Saint Petersburg State University 6.38.670.2013
Supported by SPbSU grant no. 6.38.670.2013.
Received: 21.01.2014
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 2, Pages 151–154
DOI: https://doi.org/10.1007/s10688-015-0099-7
Bibliographic databases:
Document Type: Article
UDC: 517.956.25
Language: Russian
Citation: S. B. Kolonitskii, “Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian”, Funktsional. Anal. i Prilozhen., 49:2 (2015), 88–92; Funct. Anal. Appl., 49:2 (2015), 151–154
Citation in format AMSBIB
\Bibitem{Kol15}
\by S.~B.~Kolonitskii
\paper Multiplicity of 1D-concentrated positive solutions to the Dirichlet problem for an equation with $p$-Laplacian
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 2
\pages 88--92
\mathnet{http://mi.mathnet.ru/faa3193}
\crossref{https://doi.org/10.4213/faa3193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3374908}
\zmath{https://zbmath.org/?q=an:06486278}
\elib{https://elibrary.ru/item.asp?id=24849958}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 2
\pages 151--154
\crossref{https://doi.org/10.1007/s10688-015-0099-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356443000011}
\elib{https://elibrary.ru/item.asp?id=23988823}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935872674}
Linking options:
  • https://www.mathnet.ru/eng/faa3193
  • https://doi.org/10.4213/faa3193
  • https://www.mathnet.ru/eng/faa/v49/i2/p88
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024