Abstract:
The restrictions of the nonrelativistic energy operators Hn of the relative motion of a system of n identical particles with short-range interaction potentials to subspaces M of functions with various permutation symmetries are considered. It is proved that, for each of these restrictions, there exists an infinite
increasing sequence of numbers Nj, j=1,2,…, such that the discrete spectrum of each operator HNj on M is nonempty. The family {M} of considered subspaces is, apparently, close to maximal among those which can be handled by the existing methods of study.
Citation:
G. M. Zhislin, “On the discrete spectrum of the Hamiltonians of n-particle systems with n→∞ in function spaces with various permutation symmetries”, Funktsional. Anal. i Prilozhen., 49:2 (2015), 85–88; Funct. Anal. Appl., 49:2 (2015), 148–150
\Bibitem{Zhi15}
\by G.~M.~Zhislin
\paper On the discrete spectrum of the Hamiltonians of $n$-particle systems with $n\to\infty$ in function spaces with various permutation symmetries
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 2
\pages 85--88
\mathnet{http://mi.mathnet.ru/faa3189}
\crossref{https://doi.org/10.4213/faa3189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3374907}
\zmath{https://zbmath.org/?q=an:06486277}
\elib{https://elibrary.ru/item.asp?id=24849957}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 2
\pages 148--150
\crossref{https://doi.org/10.1007/s10688-015-0098-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356443000010}
\elib{https://elibrary.ru/item.asp?id=23988501}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935846169}
Linking options:
https://www.mathnet.ru/eng/faa3189
https://doi.org/10.4213/faa3189
https://www.mathnet.ru/eng/faa/v49/i2/p85
This publication is cited in the following 1 articles:
Xia L., Wu M., Ge X., “Symmetry Preserving Discretization of the Hamiltonian Systems With Holonomic Constraints”, Mathematics, 9:22 (2021), 2959