Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 2, Pages 85–88
DOI: https://doi.org/10.4213/faa3189
(Mi faa3189)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

On the discrete spectrum of the Hamiltonians of $n$-particle systems with $n\to\infty$ in function spaces with various permutation symmetries

G. M. Zhislinab

a N. I. Lobachevski State University of Nizhni Novgorod
b Scientific Research Institute of Radio Physics, Nizhnii Novgorod
Full-text PDF (157 kB) Citations (1)
References:
Abstract: The restrictions of the nonrelativistic energy operators $H_n$ of the relative motion of a system of $n$ identical particles with short-range interaction potentials to subspaces $M$ of functions with various permutation symmetries are considered. It is proved that, for each of these restrictions, there exists an infinite increasing sequence of numbers $N_j$, $j=1,2,\dots$, such that the discrete spectrum of each operator $H_{N_j}$ on $M$ is nonempty. The family $\{M\}$ of considered subspaces is, apparently, close to maximal among those which can be handled by the existing methods of study.
Keywords: many-particle Hamiltonian, discrete spectrum, permutation symmetry.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00458_a
This work was supported by RFBR grant no. 11-01-00458_a.
Received: 11.09.2013
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 2, Pages 148–150
DOI: https://doi.org/10.1007/s10688-015-0098-8
Bibliographic databases:
Document Type: Article
UDC: 519.4
Language: Russian
Citation: G. M. Zhislin, “On the discrete spectrum of the Hamiltonians of $n$-particle systems with $n\to\infty$ in function spaces with various permutation symmetries”, Funktsional. Anal. i Prilozhen., 49:2 (2015), 85–88; Funct. Anal. Appl., 49:2 (2015), 148–150
Citation in format AMSBIB
\Bibitem{Zhi15}
\by G.~M.~Zhislin
\paper On the discrete spectrum of the Hamiltonians of $n$-particle systems with $n\to\infty$ in function spaces with various permutation symmetries
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 2
\pages 85--88
\mathnet{http://mi.mathnet.ru/faa3189}
\crossref{https://doi.org/10.4213/faa3189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3374907}
\zmath{https://zbmath.org/?q=an:06486277}
\elib{https://elibrary.ru/item.asp?id=24849957}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 2
\pages 148--150
\crossref{https://doi.org/10.1007/s10688-015-0098-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356443000010}
\elib{https://elibrary.ru/item.asp?id=23988501}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935846169}
Linking options:
  • https://www.mathnet.ru/eng/faa3189
  • https://doi.org/10.4213/faa3189
  • https://www.mathnet.ru/eng/faa/v49/i2/p85
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024