Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 2, Pages 93–96
DOI: https://doi.org/10.4213/faa3148
(Mi faa3148)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces

D. A. Popovab

a M. V. Lomonosov Moscow State University
b A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University
Full-text PDF (114 kB) Citations (1)
References:
Abstract: An explicit formula which gives an expansion in the zeros of the Selberg function of the second term in the Weyl formula for any strictly hyperbolic group is obtained, and some of its consequences are stated.
Keywords: Weyl formula, strictly hyperbolic group, Selberg zeta function.
Received: 09.07.2012
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 2, Pages 150–153
DOI: https://doi.org/10.1007/s10688-014-0056-x
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: D. A. Popov, “On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces”, Funktsional. Anal. i Prilozhen., 48:2 (2014), 93–96; Funct. Anal. Appl., 48:2 (2014), 150–153
Citation in format AMSBIB
\Bibitem{Pop14}
\by D.~A.~Popov
\paper On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 2
\pages 93--96
\mathnet{http://mi.mathnet.ru/faa3148}
\crossref{https://doi.org/10.4213/faa3148}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3288180}
\zmath{https://zbmath.org/?q=an:06410495}
\elib{https://elibrary.ru/item.asp?id=22834177}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 2
\pages 150--153
\crossref{https://doi.org/10.1007/s10688-014-0056-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340070300007}
\elib{https://elibrary.ru/item.asp?id=24058328}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902366511}
Linking options:
  • https://www.mathnet.ru/eng/faa3148
  • https://doi.org/10.4213/faa3148
  • https://www.mathnet.ru/eng/faa/v48/i2/p93
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :215
    References:53
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024