Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 2, Pages 88–92
DOI: https://doi.org/10.4213/faa3142
(Mi faa3142)
 

Brief communications

On the Mirabolic Lie Algebra $\mathfrak{p}_n$

A. A. Kirillovab

a Institute for Information Transmission Problems, Russian Academy of Sciences
b University of Pennsylvania
References:
Abstract: We consider the Lie algebra $\mathfrak{g}=\mathfrak{p}_n$ of $(n+1)\times (n+1)$ matrices with zeros in the last row. This algebra has received the name of mirabolic; it has many remarkable properties and plays an important role in representation theory. In this paper we study open coadjoint orbits for the corresponding Lie group $P_n$.
Keywords: Lie groups, Lie algebras, representations.
Received: 07.10.2013
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 2, Pages 145–149
DOI: https://doi.org/10.1007/s10688-014-0055-y
Bibliographic databases:
Document Type: Article
UDC: 512.554.3
Language: Russian
Citation: A. A. Kirillov, “On the Mirabolic Lie Algebra $\mathfrak{p}_n$”, Funktsional. Anal. i Prilozhen., 48:2 (2014), 88–92; Funct. Anal. Appl., 48:2 (2014), 145–149
Citation in format AMSBIB
\Bibitem{Kir14}
\by A.~A.~Kirillov
\paper On the Mirabolic Lie Algebra $\mathfrak{p}_n$
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 2
\pages 88--92
\mathnet{http://mi.mathnet.ru/faa3142}
\crossref{https://doi.org/10.4213/faa3142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3288179}
\zmath{https://zbmath.org/?q=an:06410494}
\elib{https://elibrary.ru/item.asp?id=22834176}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 2
\pages 145--149
\crossref{https://doi.org/10.1007/s10688-014-0055-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340070300006}
\elib{https://elibrary.ru/item.asp?id=24058405}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902386014}
Linking options:
  • https://www.mathnet.ru/eng/faa3142
  • https://doi.org/10.4213/faa3142
  • https://www.mathnet.ru/eng/faa/v48/i2/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:434
    Full-text PDF :188
    References:70
    First page:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024