Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 1, Pages 26–32
DOI: https://doi.org/10.4213/faa3102
(Mi faa3102)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the Titchmarsh Convolution Theorem for Distributions on the Circle

A. A. Komechab, A. I. Komechac

a A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
b Texas A&M University
c University of Vienna
Full-text PDF (135 kB) Citations (3)
References:
Abstract: We prove a version of the Titchmarsh convolution theorem for distributions on the circle. We show that a certain “naïve” form of the Titchmarsh theorem can be violated, but only for the convolution of distributions with certain symmetry properties.
Keywords: Titchmarsh convolution theorem, symmetry properties, periodic distributions.
Received: 09.01.2011
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 1, Pages 21–26
DOI: https://doi.org/10.1007/s10688-013-0003-2
Bibliographic databases:
Document Type: Article
UDC: 517.71
Language: Russian
Citation: A. A. Komech, A. I. Komech, “On the Titchmarsh Convolution Theorem for Distributions on the Circle”, Funktsional. Anal. i Prilozhen., 47:1 (2013), 26–32; Funct. Anal. Appl., 47:1 (2013), 21–26
Citation in format AMSBIB
\Bibitem{KomKom13}
\by A.~A.~Komech, A.~I.~Komech
\paper On the Titchmarsh Convolution Theorem for Distributions on the Circle
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 1
\pages 26--32
\mathnet{http://mi.mathnet.ru/faa3102}
\crossref{https://doi.org/10.4213/faa3102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3087829}
\zmath{https://zbmath.org/?q=an:06213806}
\elib{https://elibrary.ru/item.asp?id=20730677}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 1
\pages 21--26
\crossref{https://doi.org/10.1007/s10688-013-0003-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316206200003}
\elib{https://elibrary.ru/item.asp?id=20435151}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874903239}
Linking options:
  • https://www.mathnet.ru/eng/faa3102
  • https://doi.org/10.4213/faa3102
  • https://www.mathnet.ru/eng/faa/v47/i1/p26
  • This publication is cited in the following 3 articles:
    1. A. I. Komech, E. A. Kopylova, “Attractors of nonlinear Hamiltonian partial differential equations”, Russian Math. Surveys, 75:1 (2020), 1–87  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Andrew Comech, “Solutions with Compact Time Spectrum to Nonlinear Klein–Gordon and Schrödinger Equations and the Titchmarsh Theorem for Partial Convolution”, Arnold Math J., 5:2-3 (2019), 315  crossref
    3. Alexander Komech, “Attractors of Hamilton nonlinear PDEs”, DCDS-A, 36:11 (2016), 6201  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:503
    Full-text PDF :233
    References:96
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025