Abstract:
We prove a version of the Titchmarsh convolution theorem for distributions on the circle. We show that a certain “naïve” form of the Titchmarsh theorem can be violated, but only for the convolution of distributions with certain symmetry properties.
Citation:
A. A. Komech, A. I. Komech, “On the Titchmarsh Convolution Theorem for Distributions on the Circle”, Funktsional. Anal. i Prilozhen., 47:1 (2013), 26–32; Funct. Anal. Appl., 47:1 (2013), 21–26
\Bibitem{KomKom13}
\by A.~A.~Komech, A.~I.~Komech
\paper On the Titchmarsh Convolution Theorem for Distributions on the Circle
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 1
\pages 26--32
\mathnet{http://mi.mathnet.ru/faa3102}
\crossref{https://doi.org/10.4213/faa3102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3087829}
\zmath{https://zbmath.org/?q=an:06213806}
\elib{https://elibrary.ru/item.asp?id=20730677}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 1
\pages 21--26
\crossref{https://doi.org/10.1007/s10688-013-0003-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316206200003}
\elib{https://elibrary.ru/item.asp?id=20435151}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874903239}
Linking options:
https://www.mathnet.ru/eng/faa3102
https://doi.org/10.4213/faa3102
https://www.mathnet.ru/eng/faa/v47/i1/p26
This publication is cited in the following 3 articles:
A. I. Komech, E. A. Kopylova, “Attractors of nonlinear Hamiltonian partial differential equations”, Russian Math. Surveys, 75:1 (2020), 1–87
Andrew Comech, “Solutions with Compact Time Spectrum to Nonlinear Klein–Gordon and Schrödinger Equations and the Titchmarsh Theorem for Partial Convolution”, Arnold Math J., 5:2-3 (2019), 315
Alexander Komech, “Attractors of Hamilton nonlinear PDEs”, DCDS-A, 36:11 (2016), 6201