|
This article is cited in 1 scientific paper (total in 1 paper)
On an Equivariant Analogue of the Monodromy Zeta Function
S. M. Gusein-Zade M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We offer an equivariant analogue of the monodromy zeta function of a germ invariant with respect to an action of a finite group $G$ as an element of the Grothendieck ring of finite $(\mathbb{Z}\times G)$-sets. We state
equivariant analogues of the Sebastiani–Thom theorem and of the A'Campo formula.
Keywords:
finite group action, zeta function of a map, monodromy.
Received: 30.06.2012
Citation:
S. M. Gusein-Zade, “On an Equivariant Analogue of the Monodromy Zeta Function”, Funktsional. Anal. i Prilozhen., 47:1 (2013), 17–25; Funct. Anal. Appl., 47:1 (2013), 14–20
Linking options:
https://www.mathnet.ru/eng/faa3095https://doi.org/10.4213/faa3095 https://www.mathnet.ru/eng/faa/v47/i1/p17
|
|