Abstract:
It is proved that the Novikov–Veselov equation (an analogue of the KdV equation in dimension 2+1) at zero energy does not have sufficiently localized soliton solutions of conductivity type.
Citation:
A. V. Kazeykina, “Absence of Conductivity-Type Solitons for the Novikov–Veselov Equation at Zero Energy”, Funktsional. Anal. i Prilozhen., 47:1 (2013), 79–82; Funct. Anal. Appl., 47:1 (2013), 64–66
\Bibitem{Kaz13}
\by A.~V.~Kazeykina
\paper Absence of Conductivity-Type Solitons for the Novikov--Veselov Equation at Zero Energy
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 1
\pages 79--82
\mathnet{http://mi.mathnet.ru/faa3100}
\crossref{https://doi.org/10.4213/faa3100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3087834}
\zmath{https://zbmath.org/?q=an:06213811}
\elib{https://elibrary.ru/item.asp?id=20730682}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 1
\pages 64--66
\crossref{https://doi.org/10.1007/s10688-013-0008-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316206200008}
\elib{https://elibrary.ru/item.asp?id=20435159}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874908848}
Linking options:
https://www.mathnet.ru/eng/faa3100
https://doi.org/10.4213/faa3100
https://www.mathnet.ru/eng/faa/v47/i1/p79
This publication is cited in the following 2 articles:
A. V. Kazeykina, “Absence of Solitons with Sufficient Algebraic Localization for the Novikov–Veselov Equation at Nonzero Energy”, Funct. Anal. Appl., 48:1 (2014), 24–35
Anna Kazeykina, “Solitons and large time behavior of solutions of a multidimensional integrable equation”, Journées équations aux dérivées partielles, 2014, 1