|
Brief communications
Commutator Estimates in von Neumann Algebras
A. F. Bera, F. A. Sukochevb a DCF Technologies Ltd.
b University of New South Wales, School of Mathematics and Statistics
Abstract:
Let $\mathcal{M}$ be a von Neumann algebra. For every self-adjoint locally measurable operator $a$, there exists a central self-adjoint locally measurable operator $c_0$ such that, given any $\varepsilon>0$, $|[a,u_\varepsilon]|\ge(1-\varepsilon)|a-c_0|$ for some unitary operator $u_\varepsilon\in\mathcal{M}$.
In particular, every derivation $\delta\colon\mathcal{M}\to\mathcal{I}$ (where $\mathcal{I}$ is an ideal in $\mathcal{M}$) is inner, and $\delta=\delta_a$ for $a\in\mathcal{I}$.
Keywords:
derivation, von Neumann algebra, measurable operator, symmetric operator ideal.
Received: 03.02.2011
Citation:
A. F. Ber, F. A. Sukochev, “Commutator Estimates in von Neumann Algebras”, Funktsional. Anal. i Prilozhen., 47:1 (2013), 77–79; Funct. Anal. Appl., 47:1 (2013), 62–63
Linking options:
https://www.mathnet.ru/eng/faa3099https://doi.org/10.4213/faa3099 https://www.mathnet.ru/eng/faa/v47/i1/p77
|
|