Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 2, Pages 66–82
DOI: https://doi.org/10.4213/faa3073
(Mi faa3073)
 

This article is cited in 3 scientific papers (total in 3 papers)

Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$

D. A. Popovab

a M. V. Lomonosov Moscow State University
b A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University
Full-text PDF (235 kB) Citations (3)
References:
Abstract: Let the standard Riemannian metric of constant curvature $K=-1$ be given on a compact Riemannian surface of genus $g>1$. Under this condition, for a class of strictly hyperbolic Fuchsian groups, we obtain an explicit expression for the spectral counting function of the Laplace operator in the form of a series over the zeros of the Selberg zeta function.
Keywords: Selberg zeta function, spectral counting function, strictly hyperbolic group.
Received: 24.02.2011
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 2, Pages 133–146
DOI: https://doi.org/10.1007/s10688-012-0019-z
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: D. A. Popov, “Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$”, Funktsional. Anal. i Prilozhen., 46:2 (2012), 66–82; Funct. Anal. Appl., 46:2 (2012), 133–146
Citation in format AMSBIB
\Bibitem{Pop12}
\by D.~A.~Popov
\paper Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 2
\pages 66--82
\mathnet{http://mi.mathnet.ru/faa3073}
\crossref{https://doi.org/10.4213/faa3073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978061}
\zmath{https://zbmath.org/?q=an:06207355}
\elib{https://elibrary.ru/item.asp?id=20730654}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 2
\pages 133--146
\crossref{https://doi.org/10.1007/s10688-012-0019-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305412000006}
\elib{https://elibrary.ru/item.asp?id=17992064}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862522538}
Linking options:
  • https://www.mathnet.ru/eng/faa3073
  • https://doi.org/10.4213/faa3073
  • https://www.mathnet.ru/eng/faa/v46/i2/p66
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:705
    Full-text PDF :235
    References:87
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024