Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 2, Pages 52–65
DOI: https://doi.org/10.4213/faa3068
(Mi faa3068)
 

This article is cited in 4 scientific papers (total in 4 papers)

Absolutely Convergent Fourier Series. An Improvement of the Beurling–Helson Theorem

V. V. Lebedev

Moscow State Institute of Electronics and Mathematics
Full-text PDF (242 kB) Citations (4)
References:
Abstract: We consider the space $A(\mathbb T)$ of all continuous functions $f$ on the circle $\mathbb T$ such that the sequence of Fourier coefficients $\widehat{f}=\{\widehat{f}(k),\,k\in\mathbb Z\}$ belongs to $l^1(\mathbb Z)$. The norm on $A(\mathbb T)$ is defined by $\|f\|_{A(\mathbb T)}=\|\widehat{f}\|_{l^1(\mathbb Z)}$. According to the well-known Beurling–Helson theorem, if $\varphi\colon \mathbb T\to\mathbb T$ is a continuous mapping such that $\|e^{in\varphi}\|_{A(\mathbb T)}=O(1)$, $n\in\mathbb Z$, then $\varphi$ is linear. It was conjectured by Kahane that the same conclusion about $\varphi$ is true under the assumption that $\|e^{in\varphi}\|_{A(\mathbb T)}=o(\log |n|)$. We show that if $\|e^{in\varphi}\|_{A(\mathbb T)}=o((\log\log |n|/\log\log\log |n|)^{1/12})$, then $\varphi$ is linear.
Keywords: absolutely convergent Fourier series, Beurling–Helson theorem.
Received: 09.10.2011
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 2, Pages 121–132
DOI: https://doi.org/10.1007/s10688-012-0018-0
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: V. V. Lebedev, “Absolutely Convergent Fourier Series. An Improvement of the Beurling–Helson Theorem”, Funktsional. Anal. i Prilozhen., 46:2 (2012), 52–65; Funct. Anal. Appl., 46:2 (2012), 121–132
Citation in format AMSBIB
\Bibitem{Leb12}
\by V.~V.~Lebedev
\paper Absolutely Convergent Fourier Series. An Improvement of the Beurling--Helson Theorem
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 2
\pages 52--65
\mathnet{http://mi.mathnet.ru/faa3068}
\crossref{https://doi.org/10.4213/faa3068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978060}
\zmath{https://zbmath.org/?q=an:06207354}
\elib{https://elibrary.ru/item.asp?id=20730653}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 2
\pages 121--132
\crossref{https://doi.org/10.1007/s10688-012-0018-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305412000005}
\elib{https://elibrary.ru/item.asp?id=17992208}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862571750}
Linking options:
  • https://www.mathnet.ru/eng/faa3068
  • https://doi.org/10.4213/faa3068
  • https://www.mathnet.ru/eng/faa/v46/i2/p52
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:708
    Full-text PDF :237
    References:82
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024