Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 2, Pages 52–65
DOI: https://doi.org/10.4213/faa3068
(Mi faa3068)
 

This article is cited in 4 scientific papers (total in 4 papers)

Absolutely Convergent Fourier Series. An Improvement of the Beurling–Helson Theorem

V. V. Lebedev

Moscow State Institute of Electronics and Mathematics
Full-text PDF (242 kB) Citations (4)
References:
Abstract: We consider the space A(T) of all continuous functions f on the circle T such that the sequence of Fourier coefficients ˆf={ˆf(k),kZ} belongs to l1(Z). The norm on A(T) is defined by fA(T)=ˆfl1(Z). According to the well-known Beurling–Helson theorem, if φ:TT is a continuous mapping such that einφA(T)=O(1), nZ, then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that einφA(T)=o(log|n|). We show that if einφA(T)=o((loglog|n|/logloglog|n|)1/12), then φ is linear.
Keywords: absolutely convergent Fourier series, Beurling–Helson theorem.
Received: 09.10.2011
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 2, Pages 121–132
DOI: https://doi.org/10.1007/s10688-012-0018-0
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: V. V. Lebedev, “Absolutely Convergent Fourier Series. An Improvement of the Beurling–Helson Theorem”, Funktsional. Anal. i Prilozhen., 46:2 (2012), 52–65; Funct. Anal. Appl., 46:2 (2012), 121–132
Citation in format AMSBIB
\Bibitem{Leb12}
\by V.~V.~Lebedev
\paper Absolutely Convergent Fourier Series. An Improvement of the Beurling--Helson Theorem
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 2
\pages 52--65
\mathnet{http://mi.mathnet.ru/faa3068}
\crossref{https://doi.org/10.4213/faa3068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978060}
\zmath{https://zbmath.org/?q=an:06207354}
\elib{https://elibrary.ru/item.asp?id=20730653}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 2
\pages 121--132
\crossref{https://doi.org/10.1007/s10688-012-0018-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305412000005}
\elib{https://elibrary.ru/item.asp?id=17992208}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862571750}
Linking options:
  • https://www.mathnet.ru/eng/faa3068
  • https://doi.org/10.4213/faa3068
  • https://www.mathnet.ru/eng/faa/v46/i2/p52
  • This publication is cited in the following 4 articles:
    1. Lebedev V. Olevskii A., “Homeomorphic Changes of Variable and Fourier Multipliers”, J. Math. Anal. Appl., 481:2 (2020), 123502  crossref  mathscinet  zmath  isi  scopus
    2. Lebedev V., “Quantitative Aspects of the Beurling-Helson Theorem: Phase Functions of a Special Form”, Studia Math., 247:3 (2019), 273–283  crossref  mathscinet  zmath  isi  scopus
    3. S. V. Konyagin, I. D. Shkredov, “A quantitative version of the Beurling-Helson theorem”, Funct. Anal. Appl., 49:2 (2015), 110–121  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    4. S. V. Konyagin, I. D. Shkredov, “On the Wiener norm of subsets of Zp of medium size”, J. Math. Sci., 218:5 (2016), 599–608  mathnet  crossref  mathscinet  zmath  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:756
    Full-text PDF :258
    References:95
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025