Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 1, Pages 70–75
DOI: https://doi.org/10.4213/faa3060
(Mi faa3060)
 

Brief communications

Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary

W. Lin-Feng, Zh. Yue-Ping

Nantong University, School of Science
References:
Abstract: Let $(M^n,g)$ be a compact Riemannian manifold with convex boundary, let $d\mu=e^{h(x)}\,dV(x)$ be a weighted measure on $M$, and let $\Delta_{\mu,p}$ be the corresponding weighted $p$-Laplacian on $M$. We obtain a lower bound for the first nonzero Neumann eigenvalue of $\Delta_{\mu,p}$.
Keywords: weighted $p$-Laplacian, Bakry–Émery curvature, gradient estimate, Neumann eigenvalue.
Received: 19.03.2010
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 1, Pages 58–61
DOI: https://doi.org/10.1007/s10688-012-0007-3
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: W. Lin-Feng, Zh. Yue-Ping, “Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary”, Funktsional. Anal. i Prilozhen., 46:1 (2012), 70–75; Funct. Anal. Appl., 46:1 (2012), 58–61
Citation in format AMSBIB
\Bibitem{LinYue12}
\by W.~Lin-Feng, Zh.~Yue-Ping
\paper Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 1
\pages 70--75
\mathnet{http://mi.mathnet.ru/faa3060}
\crossref{https://doi.org/10.4213/faa3060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961742}
\zmath{https://zbmath.org/?q=an:06207343}
\elib{https://elibrary.ru/item.asp?id=20730643}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 1
\pages 58--61
\crossref{https://doi.org/10.1007/s10688-012-0007-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000301599600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863339782}
Linking options:
  • https://www.mathnet.ru/eng/faa3060
  • https://doi.org/10.4213/faa3060
  • https://www.mathnet.ru/eng/faa/v46/i1/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024