|
Brief communications
Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary
W. Lin-Feng, Zh. Yue-Ping Nantong University, School of Science
Abstract:
Let $(M^n,g)$ be a compact Riemannian manifold with convex boundary, let $d\mu=e^{h(x)}\,dV(x)$ be a weighted measure on $M$, and let $\Delta_{\mu,p}$ be the corresponding weighted $p$-Laplacian on $M$. We obtain a lower bound for the first nonzero Neumann eigenvalue of $\Delta_{\mu,p}$.
Keywords:
weighted $p$-Laplacian, Bakry–Émery curvature, gradient estimate, Neumann eigenvalue.
Received: 19.03.2010
Citation:
W. Lin-Feng, Zh. Yue-Ping, “Eigenvalue Estimate for a Weighted $\boldsymbol{p}$-Laplacian on Compact Manifolds with Boundary”, Funktsional. Anal. i Prilozhen., 46:1 (2012), 70–75; Funct. Anal. Appl., 46:1 (2012), 58–61
Linking options:
https://www.mathnet.ru/eng/faa3060https://doi.org/10.4213/faa3060 https://www.mathnet.ru/eng/faa/v46/i1/p70
|
|