Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 1, Pages 75–79
DOI: https://doi.org/10.4213/faa3057
(Mi faa3057)
 

This article is cited in 26 scientific papers (total in 26 papers)

Brief communications

Quasi-Contractions on a Nonnormal Cone Metric Space

L. Gajića, V. Rakočevićb

a University of Novi Sad
b University of Nis, Faculty of Sciences and Mathematics
References:
Abstract: Ilić and Rakočević [Appl. Math. Lett., 22:5 (2009), 728–731] proved a fixed point theorem for quasi-contractive mappings on cone metric spaces when the underlying cone is normal. Recently, Z. Kadelburg, S. Radenović, and V. Rakočević obtained a similar result without using the normality condition but only for a contractive constant λ(0,1/2) [Appl. Math. Lett., 22:11 (2009), 1674–1679]. In this note, using a new method of proof, we prove this theorem for any contractive constant λ(0,1).
Keywords: fixed point, cone metric space, quasi-contraction.
Received: 18.04.2010
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 1
DOI: https://doi.org/10.1007/s10688-012-0008-2
Bibliographic databases:
Document Type: Article
UDC: 517.988
Language: Russian
Citation: L. Gajić, V. Rakočević, “Quasi-Contractions on a Nonnormal Cone Metric Space”, Funktsional. Anal. i Prilozhen., 46:1 (2012), 75–79
Citation in format AMSBIB
\Bibitem{GajRak12}
\by L.~Gaji\'c, V.~Rakočevi\'c
\paper Quasi-Contractions on a Nonnormal Cone Metric Space
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 1
\pages 75--79
\mathnet{http://mi.mathnet.ru/faa3057}
\crossref{https://doi.org/10.4213/faa3057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961743}
\zmath{https://zbmath.org/?q=an:06207344}
\elib{https://elibrary.ru/item.asp?id=20730644}
Linking options:
  • https://www.mathnet.ru/eng/faa3057
  • https://doi.org/10.4213/faa3057
  • https://www.mathnet.ru/eng/faa/v46/i1/p75
  • This publication is cited in the following 26 articles:
    1. Yan Han, Shaoyuan Xu, Hüseyin Iş{\i}k, “Fixed Points and Continuity Conditions of Generalizedb-Quasicontractions”, Journal of Function Spaces, 2022 (2022), 1  crossref
    2. Marija Cvetković, Erdal Karap{\i}nar, Vladimir Rakočević, Seher Sultan Yeşilkaya, Springer Optimization and Its Applications, 180, Approximation and Computation in Science and Engineering, 2022, 167  crossref
    3. Mujahid Abbas, Vladimir Rakočević, Zahra Noor, “Common fixed point results of Perov type contractive mappings in D-cone metric spaces”, J Anal, 29:3 (2021), 685  crossref
    4. G. Wu, L. Yang, “Some fixed point theorems on cone 2-metric spaces over Banach algebras”, J. Fixed Point Theory Appl., 20:3 (2018), UNSP 108, 19 pp.  crossref  mathscinet  isi  scopus
    5. H. Huang, S. Radenović, G. Deng, “A sharp generalization on cone b-metric space over Banach algebra”, J. Nonlinear Sci. Appl., 10:2 (2017), 429–435  crossref  mathscinet  isi
    6. Sh. Xu, B. Z. Popović, S. Radenović, “Fixed point results for generalized g-quasi-contractions of Perov-type in cone metric spaces over Banach algebras without the assumption of normality”, J. Comput. Anal. Appl., 22:4 (2017), 648–671  mathscinet  isi
    7. S. Radenović, F. Vetro, “Some remarks on Perov type mappings in cone metric spaces”, Mediterr. J. Math., 14:6 (2017), UNSP 240, 15 pp.  crossref  mathscinet  isi  scopus
    8. Sh. Xu, S. Chen, S. Aleksić, “Fixed point theorems for generalized quasi-contractions in cone b-metric spaces over Banach algebras without the assumption of normality with applications”, Int. J. Nonlinear Anal. Appl., 8:2 (2017), 335–353  crossref  zmath  isi
    9. M. Cvetković, “On the equivalence between Perov fixed point theorem and Banach contraction principle”, Filomat, 31:11, SI (2017), 3137–3146  crossref  mathscinet  isi  scopus
    10. S. M. Aghayan, A. Zireh, A. Ebadian, “Common best proximity point theorems on cone b-metric spaces over Banach algebras”, Gazi U. J. Sci., 30:2 (2017), 159–172  mathscinet  isi
    11. H. Huang, Sh. Xu, H. Liu, S. Radenović, “Fixed point theorems and T-stability of Picard iteration for generalized Lipschitz mappings in cone metric spaces over Banach algebras”, J. Comput. Anal. Appl., 20:5 (2016), 869–888  mathscinet  zmath  isi
    12. D. Ilić, M. Cvetković, L. Gajić, V. Rakočević, “Fixed points of sequence of Ćirić generalized contractions of Perov type”, Mediterr. J. Math., 13:6 (2016), 3921–3937  crossref  mathscinet  zmath  isi  scopus
    13. M. Cvetković, “Operatorial contractions on solid cone metric spaces”, J. Nonlinear Convex Anal., 17:7 (2016), 1399–1408  mathscinet  zmath  isi
    14. J. Yin, Q. Yan, T. Wang, L. Liu, “Tripled coincidence points for mixed comparable mappings in partially ordered cone metric spaces over Banach algebras”, J. Nonlinear Sci. Appl., 9:4 (2016), 1590–1599  crossref  mathscinet  zmath  isi
    15. M. Cvetković, V. Rakočević, “Fisher quasi-contraction of Perov type”, J. Nonlinear Convex Anal., 16:2 (2015), 339–352  mathscinet  zmath  isi  scopus
    16. M. Cvetković, V. Rakočević, “Common fixed point results for mappings of Perov type”, Math. Nachr., 288:16 (2015), 1873–1890  crossref  mathscinet  zmath  isi  scopus
    17. M. Cvetković, V. Rakočević, “Extensions of Perov theorem”, Carpathian J. Math., 31:2 (2015), 181–188  crossref  mathscinet  zmath  isi
    18. Jiandong Yin, Tao Wang, Qi Yan, “Fixed point theorems of ordered contractive mappings on cone metric spaces over Banach algebras”, Fixed Point Theory Appl, 2015:1 (2015)  crossref
    19. Tao Wang, Jiandong Yin, Qi Yan, “Fixed point theorems on cone 2-metric spaces over Banach algebras and an application”, Fixed Point Theory Appl, 2015:1 (2015)  crossref
    20. M. Cvetković, V. Rakočević, “Quasi-contraction of Perov type”, Appl. Math. Comput., 237 (2014), 712–722  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:587
    Full-text PDF :164
    References:82
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025