Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2011, Volume 45, Issue 3, Pages 55–78
DOI: https://doi.org/10.4213/faa3040
(Mi faa3040)
 

This article is cited in 11 scientific papers (total in 11 papers)

Algebraic functions, configuration spaces, Teichmüller spaces, and new holomorphically combinatorial invariants

V. Ya. Lin

1.Technion-Israel institute of Technology, Haifa, Israel
References:
Abstract: It is proved that, for n4, the function u=un(z), z=(z1,,zn)Cn, defined by the equation un+z1un1++zn=0 cannot be a branch of an entire algebraic function g on Cn that is a composition of entire algebraic functions depending on fewer than n1 variables and has the same discriminant set as un. A key role is played by a description of holomorphic maps between configuration spaces of C and CP1, which, in turn, involves Teichmüller spaces and new holomorphically combinatorial invariants of complex spaces.
Keywords: configuration spaces, braid groups, compositions of algebraic functions, invariants of complex spaces.
Received: 16.03.2011
English version:
Functional Analysis and Its Applications, 2011, Volume 45, Issue 3, Pages 204–224
DOI: https://doi.org/10.1007/s10688-011-0024-7
Bibliographic databases:
Document Type: Article
UDC: 515.162.8+515.17+515.172+512.54
Language: Russian
Citation: V. Ya. Lin, “Algebraic functions, configuration spaces, Teichmüller spaces, and new holomorphically combinatorial invariants”, Funktsional. Anal. i Prilozhen., 45:3 (2011), 55–78; Funct. Anal. Appl., 45:3 (2011), 204–224
Citation in format AMSBIB
\Bibitem{Lin11}
\by V.~Ya.~Lin
\paper Algebraic functions, configuration spaces, Teichm\"uller spaces, and new holomorphically combinatorial invariants
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 3
\pages 55--78
\mathnet{http://mi.mathnet.ru/faa3040}
\crossref{https://doi.org/10.4213/faa3040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2883239}
\zmath{https://zbmath.org/?q=an:1271.32007}
\elib{https://elibrary.ru/item.asp?id=20730627}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 3
\pages 204--224
\crossref{https://doi.org/10.1007/s10688-011-0024-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298226200005}
\elib{https://elibrary.ru/item.asp?id=18371963}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053472823}
Linking options:
  • https://www.mathnet.ru/eng/faa3040
  • https://doi.org/10.4213/faa3040
  • https://www.mathnet.ru/eng/faa/v45/i3/p55
  • This publication is cited in the following 11 articles:
    1. Mauricio Chávez-Pichardo, Miguel A. Martínez-Cruz, Alfredo Trejo-Martínez, Daniel Martínez-Carbajal, Tanya Arenas-Resendiz, “A Complete Review of the General Quartic Equation with Real Coefficients and Multiple Roots”, Mathematics, 10:14 (2022), 2377  crossref
    2. Michele Bolognesi, Alex Massarenti, “Birational geometry of moduli spaces of configurations of points on the line”, Alg. Number Th., 15:2 (2021), 513  crossref
    3. Carolina Araujo, Thiago Fassarella, Inder Kaur, Alex Massarenti, “On Automorphisms of Moduli Spaces of Parabolic Vector Bundles”, International Mathematics Research Notices, 2021:3 (2021), 2261  crossref
    4. Chilikov A.A., “Exponential Diophantine Equations in Rings of Positive Characteristic”, J. Knot Theory Ramifications, 29:2, SI (2020), 2040002  crossref  mathscinet  zmath  isi
    5. Chen L., Salter N., “Section Problems For Configurations of Points on the Riemann Sphere”, Algebr. Geom. Topol., 20:6 (2020), 3047–3082  crossref  mathscinet  isi  scopus
    6. Florence M., Reichstein Z., “The Rationality Problem For Forms of M<Overbar></Mml:Mover>0<Mml:Mo>,N”, Bull. London Math. Soc., 50:1 (2018), 148–158  crossref  mathscinet  zmath  isi  scopus
    7. Alex Massarenti, “On the biregular geometry of the Fulton–MacPherson compactification”, Advances in Mathematics, 322 (2017), 97  crossref
    8. Barbara Fantechi, Alex Massarenti, “On the rigidity of moduli of curves in arbitrary characteristic”, Int Math Res Notices, 2016, rnw105  crossref
    9. Askold Khovanskii, Springer Monographs in Mathematics, Topological Galois Theory, 2014, 195  crossref
    10. Vladimir Lin, Mikhail Zaidenberg, Springer Proceedings in Mathematics & Statistics, 79, Automorphisms in Birational and Affine Geometry, 2014, 431  crossref
    11. Askold Khovanskii, Springer Monographs in Mathematics, Topological Galois Theory, 2014, 107  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:678
    Full-text PDF :762
    References:110
    First page:15
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025