Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2011, Volume 45, Issue 3, Pages 41–54
DOI: https://doi.org/10.4213/faa3045
(Mi faa3045)
 

This article is cited in 23 scientific papers (total in 23 papers)

Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations

Yu. S. Ilyashenkoabcd, D. A. Ryzhove, D. A. Filimonovf

a Moscow State University
b Independent University of Moscow
c Steklov Mathematical Institute
d Cornell University, USA
e Chebyshev Laboratory, Saint-Petersburg State University
f 5.Moscow State University of Railway Engineering
References:
Abstract: In this work we study dynamical systems on the torus modeling Josephson junctions in the theory of superconductivity, and also perturbations of these systems. We show that, in the family of equations that describe resistively shunted Josephson junctions, phase lock occurs only for integer rotation numbers and propose a simple method for calculating the boundaries of the corresponding Arnold tongues. This part is a simplification of known results about the quantization of rotation number [4]. Moreover, we show that the quantization of rotation number only at integer points is a phenomenon of infinite codimension. Namely, there is an infinite set of independent perturbations of systems that give rise to countably many nondiscretely located phase-locking regions.
Keywords: differential equations on the torus, perturbation theory, Josephson effect, phase lock, quantization of rotation number, Arnold tongues.
Received: 03.12.2010
English version:
Functional Analysis and Its Applications, 2011, Volume 45, Issue 3, Pages 192–203
DOI: https://doi.org/10.1007/s10688-011-0023-8
Bibliographic databases:
Document Type: Article
UDC: 517.923+517.925.54
Language: Russian
Citation: Yu. S. Ilyashenko, D. A. Ryzhov, D. A. Filimonov, “Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations”, Funktsional. Anal. i Prilozhen., 45:3 (2011), 41–54; Funct. Anal. Appl., 45:3 (2011), 192–203
Citation in format AMSBIB
\Bibitem{IlyRyzFil11}
\by Yu.~S.~Ilyashenko, D.~A.~Ryzhov, D.~A.~Filimonov
\paper Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 3
\pages 41--54
\mathnet{http://mi.mathnet.ru/faa3045}
\crossref{https://doi.org/10.4213/faa3045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2883238}
\zmath{https://zbmath.org/?q=an:1271.34052}
\elib{https://elibrary.ru/item.asp?id=20730626}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 3
\pages 192--203
\crossref{https://doi.org/10.1007/s10688-011-0023-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298226200004}
\elib{https://elibrary.ru/item.asp?id=18008005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053482678}
Linking options:
  • https://www.mathnet.ru/eng/faa3045
  • https://doi.org/10.4213/faa3045
  • https://www.mathnet.ru/eng/faa/v45/i3/p41
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:900
    Full-text PDF :298
    References:88
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024