Abstract:
A formally self-adjoint Robin–Laplace problem in a peak-shaped domain is considered. The associated
quadratic form is not semi-bounded, which is proved to lead to a pathological structure of the spectrum of the corresponding operator. Namely, the residual spectrum of the operator itself and the point spectrum of its adjoint cover the whole complex plane. The operator is not self-adjoint, and the (discrete) spectrum of any of its self-adjoint extensions is not semi-bounded.
Keywords:
Robin condition, third boundary value problem, peak, cusp, spectrum, asymptotics, self-adjoint extension.
Citation:
S. A. Nazarov, Ya. Taskinen, “On the Spectrum of the Robin Problem in a Domain with a Peak”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 93–96; Funct. Anal. Appl., 45:1 (2011), 77–79
\Bibitem{NazTas11}
\by S.~A.~Nazarov, Ya.~Taskinen
\paper On the Spectrum of the Robin Problem in a Domain with a Peak
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 1
\pages 93--96
\mathnet{http://mi.mathnet.ru/faa3020}
\crossref{https://doi.org/10.4213/faa3020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848745}
\zmath{https://zbmath.org/?q=an:1271.35056}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 1
\pages 77--79
\crossref{https://doi.org/10.1007/s10688-011-0010-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288557800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952796676}
Linking options:
https://www.mathnet.ru/eng/faa3020
https://doi.org/10.4213/faa3020
https://www.mathnet.ru/eng/faa/v45/i1/p93
This publication is cited in the following 5 articles:
Nazarov S.A., Popoff N., Taskinen J., “Plummeting and Blinking Eigenvalues of the Robin Laplacian in a Cuspidal Domain”, Proc. R. Soc. Edinb. Sect. A-Math., 150:6 (2020), PII S0308210519000489, 2871–2893
Bruneau V., Popoff N., “On the negative spectrum of the Robin Laplacian in corner domains”, Anal. PDE, 9:5 (2016), 1259–1283
Daners D., “Principal Eigenvalues for Generalised Indefinite Robin Problems”, Potential Anal., 38:4 (2013), 1047–1069
T. A. Mel'nik, D. Yu. Sadovyi, “Homogenization of Boundary Value Problems in Two-Level Thick Junctions Consisting of Thin Disks with Rounded or Sharp Edges”, J Math Sci, 191:2 (2013), 254
Kamotski I.V. Maz'ya V.G., “On the linear water wave problem in the presence of a critically submerged body”, SIAM J. Math. Anal., 44:6 (2012), 4222–4249