Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2011, Volume 45, Issue 1, Pages 88–93
DOI: https://doi.org/10.4213/faa3027
(Mi faa3027)
 

This article is cited in 2 scientific papers (total in 3 papers)

Brief communications

The Möbius Function on Abelian Semigroups

E. A. Gorin

Moscow State Pedagogical University
Full-text PDF (204 kB) Citations (3)
References:
Abstract: Let $X$ be an Abelian semigroup such that the following conditions hold: (i) if $x\times y=1\mspace{-4.85mu}{\mathrm I}$ ($1\mspace{-4.85mu}{\mathrm I}$ is the identity element), then $x=y=1\mspace{-4.85mu}{\mathrm I}$; (ii) the set $\{\{x,y\}\colon x\times y=a\}$ is finite for any $a\in X$. Let $\Lambda$ be any field, and let $\mathcal{E}$ be the algebra of all $\Lambda$-valued functions on $X$. The convolution of $u,v\in\mathcal{E}$ is defined by
$$ (u*v)(x)=\sum\{u(a)v(b)\colon a\times b=x\}. $$

We set $\varepsilon(x)=1_{\Lambda}$ for all $x\in X$. The Möbius function $\mu$ is defined as the solution of the equation $\varepsilon*\mu=\delta$ ($\delta$ is the Dirac function). The Möbius function is unique (if it exists at all).
Some existence conditions are given. If $\Lambda$ is replaced by the ring of integers, then $\mu$ exists if and only if $X$ does not contain nontrivial idempotents.
Keywords: Abelian semigroup, free module, $\zeta$-functions.
Received: 15.04.2010
English version:
Functional Analysis and Its Applications, 2011, Volume 45, Issue 1, Pages 73–76
DOI: https://doi.org/10.1007/s10688-011-0009-6
Bibliographic databases:
Document Type: Article
UDC: 517.588+512.548.2
Language: Russian
Citation: E. A. Gorin, “The Möbius Function on Abelian Semigroups”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 88–93; Funct. Anal. Appl., 45:1 (2011), 73–76
Citation in format AMSBIB
\Bibitem{Gor11}
\by E.~A.~Gorin
\paper The M\"obius Function on Abelian Semigroups
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 1
\pages 88--93
\mathnet{http://mi.mathnet.ru/faa3027}
\crossref{https://doi.org/10.4213/faa3027}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848744}
\zmath{https://zbmath.org/?q=an:1271.43003}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 1
\pages 73--76
\crossref{https://doi.org/10.1007/s10688-011-0009-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288557800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952784431}
Linking options:
  • https://www.mathnet.ru/eng/faa3027
  • https://doi.org/10.4213/faa3027
  • https://www.mathnet.ru/eng/faa/v45/i1/p88
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025