Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 1, Pages 87–90
DOI: https://doi.org/10.4213/faa2976
(Mi faa2976)
 

This article is cited in 3 scientific papers (total in 3 papers)

Brief communications

Koenigs Problem and Extreme Fixed Points

V. A. Senderov, V. A. Khatskevicha

a International College of Technology, ORT Braude
Full-text PDF (175 kB) Citations (3)
References:
Abstract: This note continues some previous studies by the authors. We consider a linear-fractional mapping $\mathcal{F}_A\colon\mathcal{K}\to\mathcal{K}$ generated by a triangular operator, where $\mathcal{K}$ is the unit operator ball and the fixed point $C$ of the extension of $\mathcal{F}_A$ to $\overline{\mathcal{K}}$ is either an isometry or a coisometry. Under some natural restrictions on one of the diagonal entries of the operator matrix $A$, the structure of the other diagonal entry is investigated completely. It is shown that generally $C$ cannot be replaced in all these considerations by an arbitrary point of the unit sphere. Some special cases are studied in which this is nevertheless possible.
In conclusion, the Koenigs embedding property of the mappings under study is proved with the use of the results announced in this paper.
Keywords: bounded linear operator, Hilbert space, indefinite metric, Koenigs embedding property, linear-fractional mapping, operator ball.
Received: 22.05.2008
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 1, Pages 73–75
DOI: https://doi.org/10.1007/s10688-010-0009-y
Bibliographic databases:
Document Type: Article
UDC: 517.432+517.515+515.958
Language: Russian
Citation: V. A. Senderov, V. A. Khatskevich, “Koenigs Problem and Extreme Fixed Points”, Funktsional. Anal. i Prilozhen., 44:1 (2010), 87–90; Funct. Anal. Appl., 44:1 (2010), 73–75
Citation in format AMSBIB
\Bibitem{SenKha10}
\by V.~A.~Senderov, V.~A.~Khatskevich
\paper Koenigs Problem and Extreme Fixed Points
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 1
\pages 87--90
\mathnet{http://mi.mathnet.ru/faa2976}
\crossref{https://doi.org/10.4213/faa2976}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2656380}
\zmath{https://zbmath.org/?q=an:1272.47048}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 1
\pages 73--75
\crossref{https://doi.org/10.1007/s10688-010-0009-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275790900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949626500}
Linking options:
  • https://www.mathnet.ru/eng/faa2976
  • https://doi.org/10.4213/faa2976
  • https://www.mathnet.ru/eng/faa/v44/i1/p87
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024