Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 1, Pages 83–87
DOI: https://doi.org/10.4213/faa2953
(Mi faa2953)
 

This article is cited in 13 scientific papers (total in 13 papers)

Brief communications

Multidimensional Version of M. A. Krasnosel'skii's Generalized Contraction Principle

A. I. Perov

Voronezh State University
References:
Abstract: Let $M$ be a complete $K$-metric space with $n$-dimensional metric $\rho (x,y)\colon M\times M\to\mathbb{R}^n$, where $K$ is the cone of nonnegative vectors in $\mathbb{R}^n$. A mapping $F\colon M\to M$ is called a $Q$-contraction if $\rho (Fx,Fy)\le Q\rho (x,y)$, where $Q\colon K\to K$ is a semi-additive absolutely stable mapping. A $Q$-contraction always has a unique fixed point $x^*$ in $M$, and $\rho (x^*,a)\le (I-Q)^{-1}\rho(Fa,a)$ for every point $a$ in $M$. The point $x^*$ can be obtained by the successive approximation method $x_k=Fx_{k-1}$, $k=1,2,\dots$, starting from an arbitrary point $x_0$ in $M$, and the following error estimates hold: $\rho(x^*,x_k)\le Q^k(I-Q)^{-1}\rho(x_1,x_0)\le (I-Q)^{-1}Q^k\rho(x_1,x_0)$, $k=1,2,\dots$ . Generally, the mappings $(I-Q)^{-1}$ and $Q^k$ do not commute. For $n=1$, the result is close to M. A. Krasnosel'skii's generalized contraction principle.
Keywords: $K$-metric space, semi-additive mapping, $Q$-contraction, contraction mapping principle.
Received: 30.01.2008
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 1, Pages 69–72
DOI: https://doi.org/10.1007/s10688-010-0008-z
Bibliographic databases:
Document Type: Article
UDC: 517.988.63
Language: Russian
Citation: A. I. Perov, “Multidimensional Version of M. A. Krasnosel'skii's Generalized Contraction Principle”, Funktsional. Anal. i Prilozhen., 44:1 (2010), 83–87; Funct. Anal. Appl., 44:1 (2010), 69–72
Citation in format AMSBIB
\Bibitem{Per10}
\by A.~I.~Perov
\paper Multidimensional Version of M.~A.~Krasnosel'skii's Generalized Contraction Principle
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 1
\pages 83--87
\mathnet{http://mi.mathnet.ru/faa2953}
\crossref{https://doi.org/10.4213/faa2953}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2656388}
\zmath{https://zbmath.org/?q=an:1272.54040}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 1
\pages 69--72
\crossref{https://doi.org/10.1007/s10688-010-0008-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275790900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949582856}
Linking options:
  • https://www.mathnet.ru/eng/faa2953
  • https://doi.org/10.4213/faa2953
  • https://www.mathnet.ru/eng/faa/v44/i1/p83
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:651
    Full-text PDF :276
    References:87
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024