Abstract:
The Kruglov property and the Kruglov operator play an important role in the study of geometric properties of r. i. function spaces. We prove that the boundedness of the Kruglov operator in an r. i. space is equivalent to the uniform boundedness on this space of a sequence of operators defined by random permutations. It is also shown that there is no minimal r. i. space with the Kruglov property.
Citation:
S. V. Astashkin, D. V. Zanin, E. M. Semenov, F. A. Sukochev, “Kruglov Operator and Operators Defined by Random Permutations”, Funktsional. Anal. i Prilozhen., 43:2 (2009), 3–18; Funct. Anal. Appl., 43:2 (2009), 83–95
\Bibitem{AstZanSem09}
\by S.~V.~Astashkin, D.~V.~Zanin, E.~M.~Semenov, F.~A.~Sukochev
\paper Kruglov Operator and Operators Defined by Random Permutations
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 2
\pages 3--18
\mathnet{http://mi.mathnet.ru/faa2947}
\crossref{https://doi.org/10.4213/faa2947}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2542271}
\zmath{https://zbmath.org/?q=an:1271.47021}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 2
\pages 83--95
\crossref{https://doi.org/10.1007/s10688-009-0013-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266947300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67949091128}
Linking options:
https://www.mathnet.ru/eng/faa2947
https://doi.org/10.4213/faa2947
https://www.mathnet.ru/eng/faa/v43/i2/p3
This publication is cited in the following 4 articles:
Sergey V. Astashkin, The Rademacher System in Function Spaces, 2020, 419
Astashkin S.V., Sukochev F.A., “Randomized Operators on n×n n n Matrices and Applications”, Integr. Equ. Oper. Theory, 86:3 (2016), 333–358
Astashkin S., Sukochev F., Wong Ch.P., “Disjointification of martingale differences and conditionally independent random variables with some applications”, Studia Math., 205:2 (2011), 171–200
S. V. Astashkin, F. A. Sukochev, “Independent functions and the geometry of Banach spaces”, Russian Math. Surveys, 65:6 (2010), 1003–1081