Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 2, Pages 19–38
DOI: https://doi.org/10.4213/faa2946
(Mi faa2946)
 

This article is cited in 42 scientific papers (total in 42 papers)

On the Technique for Passing to the Limit in Nonlinear Elliptic Equations

V. V. Zhikov

Vladimir State Pedagogical University
References:
Abstract: We consider the problem of passing to the limit in a sequence of nonlinear elliptic problems. The “limit” equation is known in advance, but it has a nonclassical structure; namely, it contains the p-Laplacian with variable exponent p=p(x). Such equations typically exhibit a special kind of nonuniqueness, known as the Lavrent'ev effect, and this is what makes passing to the limit nontrivial. Equations involving the p(x)-Laplacian occur in many problems of mathematical physics. Some applications are included in the present paper. In particular, we suggest an approach to the solvability analysis of a well-known coupled system in non-Newtonian hydrodynamics (“stationary thermo-rheological viscous flows”) without resorting to any smallness conditions.
Keywords: p(x)-Laplacian, compensated compactness, weak convergence of flows to a flow.
Received: 09.11.2007
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 2, Pages 96–112
DOI: https://doi.org/10.1007/s10688-009-0014-1
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: V. V. Zhikov, “On the Technique for Passing to the Limit in Nonlinear Elliptic Equations”, Funktsional. Anal. i Prilozhen., 43:2 (2009), 19–38; Funct. Anal. Appl., 43:2 (2009), 96–112
Citation in format AMSBIB
\Bibitem{Zhi09}
\by V.~V.~Zhikov
\paper On the Technique for Passing to the Limit in Nonlinear Elliptic Equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 2
\pages 19--38
\mathnet{http://mi.mathnet.ru/faa2946}
\crossref{https://doi.org/10.4213/faa2946}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2542272}
\zmath{https://zbmath.org/?q=an:1271.35033}
\elib{https://elibrary.ru/item.asp?id=13615483}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 2
\pages 96--112
\crossref{https://doi.org/10.1007/s10688-009-0014-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266947300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149132874}
Linking options:
  • https://www.mathnet.ru/eng/faa2946
  • https://doi.org/10.4213/faa2946
  • https://www.mathnet.ru/eng/faa/v43/i2/p19
  • This publication is cited in the following 42 articles:
    1. Youssef Akdim, Morad Ouboufettal, “Existence and $L^\infty -$Estimates for Some $p(u)-$Problems with Degenerate Coercivity”, Results Math, 80:1 (2025)  crossref
    2. Sami Aouaoui, “An Existence Result to Some Local and Nonlocal $ p(u)-$Laplacian Problem Defined on $ {\mathbb {R}}^N $”, Bull. Malays. Math. Sci. Soc., 46:4 (2023)  crossref
    3. Boris Andreianov, El Houssaine Quenjel, “On Numerical Approximation of Diffusion Problems Governed by Variable-Exponent Nonlinear Elliptic Operators”, Vietnam J. Math., 51:1 (2023), 213  crossref
    4. Vetro C., “The Existence of Solutions For Local Dirichlet (R(U),S(U))-Problems”, Mathematics, 10:2 (2022), 237  crossref  isi
    5. Aouaoui S., Bahrouni A.E., “On Some Equation Defined on the Whole Euclidean Space Double-Struck Capital Rn and Involving the P(U)-Laplacian”, Math. Meth. Appl. Sci., 45:14 (2022), 8528–8554  crossref  isi
    6. Sami Aouaoui, “On some differential equations involving a new kind of variable exponents”, Electron. J. Qual. Theory Differ. Equ., 2022, no. 23, 1  crossref
    7. Kholoud Saad Albalawi, Mona Bin-Asfour, Francesca Vetro, “Remarks on Nonlocal Dirichlet Problems”, Mathematics, 10:9 (2022), 1546  crossref
    8. Antontsev S., Kuznetsov I., Shmarev S., “On a Class of Nonlocal Evolution Equations With the P[Del U]-Laplace Operator”, J. Math. Anal. Appl., 501:2 (2021), 125221  crossref  mathscinet  isi  scopus
    9. Ciro D'Apice, Umberto De Maio, Peter I. Kogut, Understanding Complex Systems, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, 2021, 489  crossref
    10. 燕茹 李, “On a Class of (p(u),q(u))-Laplacian Problem”, PM, 11:04 (2021), 586  crossref
    11. Antontsev S., Shmarev S., “Nonlocal Evolution Equations With P[U(X, T)]-Laplacian and Lower-Order Terms”, J. Elliptic Parabol. Equat., 6:1 (2020), 211–237  crossref  mathscinet  isi  scopus
    12. Kogut P.I., Kupenko O.P., “Preface”: Kogut, PI Kupenko, OP, Approximation Methods in Optimization of Nonlinear Systems, de Gruyter Series in Nonlinear Analysis and Applications, 32, Walter de Gruyter Gmbh, 2020, VII+  crossref  isi
    13. Stanislav Antontsev, Sergey Shmarev, “On a class of nonlocal evolution equations with the p[u(x,t)]-Laplace operator”, Nonlinear Analysis: Real World Applications, 56 (2020), 103165  crossref
    14. S. E. Pastukhova, D. A. Yakubovich, “Galerkin approximations for the Dirichlet problem with the $p(x)$-Laplacian”, Sb. Math., 210:1 (2019), 145–164  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. Cardone G., Woukeng J.L., “Corrector Problem in the Deterministic Homogenization of Nonlinear Elliptic Equations”, Appl. Anal., 98:1-2, SI (2019), 118–135  crossref  mathscinet  isi  scopus
    16. Pankov A., “Elliptic Operators With Nonstandard Growth Condition: Some Results and Open Problems”, Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemporary Mathematics, 734, eds. Kuchment P., Semenov E., Amer Mathematical Soc, 2019, 277–292  crossref  mathscinet  zmath  isi  scopus
    17. Chipot M., de Oliveira H.B., “Some Results on the P(U)-Laplacian Problem”, Math. Ann., 375:1-2 (2019), 283–306  crossref  mathscinet  zmath  isi
    18. Sert U., Soltanov K., “Solvability of Nonlinear Elliptic Type Equation With Two Unrelated Non Standard Growths”, J. Korean. Math. Soc., 55:6 (2018), 1337–1358  crossref  mathscinet  zmath  isi  scopus
    19. Sert U., Soltanov K., “On Solvability of a Class of Nonlinear Elliptic Type Equation With Variable Exponent”, J. Appl. Anal. Comput., 7:3 (2017), 1139–1160  crossref  mathscinet  isi
    20. Mohamed Mamchaoui, Ghouti Senouci Bereksi, “Convergence of monotone operators with respect to measures”, Z. Angew. Math. Mech., 97:5 (2017), 617  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1009
    Full-text PDF :385
    References:102
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025