Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 3, Pages 63–70
DOI: https://doi.org/10.4213/faa2913
(Mi faa2913)
 

Nonmatricial Version of the Arveson–Wittstock Extension Principle, and Its Generalization

A. Ya. Helemskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider the algebra $\mathcal{B}=\mathcal{B}(H)$ of bounded operators in a Hilbert space $H$, $\mathcal{B}$-bimodules, and morphisms of these bimodules into the algebra $\mathcal{B}(L\otimes H)$, where $L$ is a Hilbert space. We study the problem of extension of a morphism defined on a sub-$\mathcal{B}$-bimodule $Y\subset Z$ to $Z$. This problem is solved for Ruan bimodules.
Keywords: Ruan bimodule, bimodule tensor product, q-norm, q-space, completely bounded operator, Arveson–Wittstock theorem.
Received: 19.02.2007
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 3, Pages 213–219
DOI: https://doi.org/10.1007/s10688-008-0030-6
Bibliographic databases:
Document Type: Article
UDC: 517.98+512.664.1
Language: Russian
Citation: A. Ya. Helemskii, “Nonmatricial Version of the Arveson–Wittstock Extension Principle, and Its Generalization”, Funktsional. Anal. i Prilozhen., 42:3 (2008), 63–70; Funct. Anal. Appl., 42:3 (2008), 213–219
Citation in format AMSBIB
\Bibitem{Hel08}
\by A.~Ya.~Helemskii
\paper Nonmatricial Version of the Arveson--Wittstock Extension Principle, and Its Generalization
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 3
\pages 63--70
\mathnet{http://mi.mathnet.ru/faa2913}
\crossref{https://doi.org/10.4213/faa2913}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2454477}
\zmath{https://zbmath.org/?q=an:1171.46039}
\elib{https://elibrary.ru/item.asp?id=11649389}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 3
\pages 213--219
\crossref{https://doi.org/10.1007/s10688-008-0030-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259070800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549114448}
Linking options:
  • https://www.mathnet.ru/eng/faa2913
  • https://doi.org/10.4213/faa2913
  • https://www.mathnet.ru/eng/faa/v42/i3/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025