Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 3, Pages 71–75
DOI: https://doi.org/10.4213/faa2914
(Mi faa2914)
 

Brief communications

On Jordan Ideals and Submodules: Algebraic and Analytic Aspects

M. Bresara, È. V. Kissinb, V. S. Shulmanc

a University of Maribor
b London Metropolitan University
c Vologda State Technical University
References:
Abstract: Let $\mathcal{A}$ be an algebra, and let $X$ be an arbitrary $\mathcal{A}$-bimodule. A linear space $Y\subset X$ is called a Jordan $\mathcal{A}$-submodule if $Ay+yA\in Y$ for all $A\in\mathcal{A}$ and $y\in Y$. (For $X=\mathcal{A}$, this coincides with the notion of a Jordan ideal.) We study conditions under which Jordan submodules are subbimodules. General criteria are given in the purely algebraic situation as well as for the case of Banach bimodules over Banach algebras. We also consider symmetrically normed Jordan submodules over $C^*$-algebras. It turns out that there exist $C^*$-algebras in which not all Jordan ideals are ideals.
Keywords: algebra, ideal, bimodule, Jordan ideal, $C^*$-algebra, symmetrically normed ideal.
Received: 24.12.2006
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 3, Pages 220–223
DOI: https://doi.org/10.1007/s10688-008-0031-5
Bibliographic databases:
Document Type: Article
UDC: 517.986.2+517.986.9
Language: Russian
Citation: M. Bresar, È. V. Kissin, V. S. Shulman, “On Jordan Ideals and Submodules: Algebraic and Analytic Aspects”, Funktsional. Anal. i Prilozhen., 42:3 (2008), 71–75; Funct. Anal. Appl., 42:3 (2008), 220–223
Citation in format AMSBIB
\Bibitem{BreKisShu08}
\by M.~Bresar, \`E.~V.~Kissin, V.~S.~Shulman
\paper On Jordan Ideals and Submodules: Algebraic and Analytic Aspects
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 3
\pages 71--75
\mathnet{http://mi.mathnet.ru/faa2914}
\crossref{https://doi.org/10.4213/faa2914}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2454478}
\zmath{https://zbmath.org/?q=an:1178.46048}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 3
\pages 220--223
\crossref{https://doi.org/10.1007/s10688-008-0031-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259070800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549094571}
Linking options:
  • https://www.mathnet.ru/eng/faa2914
  • https://doi.org/10.4213/faa2914
  • https://www.mathnet.ru/eng/faa/v42/i3/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025