|
Brief communications
Quasi-Weyl Asymptotics of the Spectrum of the Vector Dirichlet Problem
A. S. Andreev Popov Higher Naval Academy of Radio Electronics
Abstract:
In a space of vector functions, we consider the spectral problem $\mu Au=\mathcal{P}u$, $u=u(x)$, where $A=(A_{jk})$, $j,k=1,\dots,n$, $A_{jk}=\sum_\alpha a_{\alpha jk}D^{2\alpha}$, $\mathcal{P}=(p_{jk})$, $A\ge c_0>0$, $\mathcal{P}=\mathcal{P}^*$, the $a_{\alpha jk}$ and $p_{jk}$ are constants, $x\in\Omega$, and $\Omega$ is a bounded open set. The boundary conditions correspond to the Dirichlet problem. Let $N_\pm(\mu)$ be the positive and negative spectral counting functions. We establish the asymptotics $N_\pm(\mu)\sim(\operatorname{mes}_m\Omega)\varphi_\pm(\mu)$ as $\mu\to+0$. The functions $\varphi_\pm(\mu)$ are independent of $\Omega$. In the nonelliptic case, these asymptotics are in general different from the classical (Weyl) asymptotics.
Keywords:
quasi-Weyl asymptotics, Dirichlet problem, vector Dirichlet problem, nonelliptic differential operator, Weyl formula, Weyl asymptotics.
Received: 13.06.2006
Citation:
A. S. Andreev, “Quasi-Weyl Asymptotics of the Spectrum of the Vector Dirichlet Problem”, Funktsional. Anal. i Prilozhen., 42:2 (2008), 75–78; Funct. Anal. Appl., 42:2 (2008), 141–143
Linking options:
https://www.mathnet.ru/eng/faa2904https://doi.org/10.4213/faa2904 https://www.mathnet.ru/eng/faa/v42/i2/p75
|
Statistics & downloads: |
Abstract page: | 405 | Full-text PDF : | 189 | References: | 76 | First page: | 8 |
|