|
This article is cited in 2 scientific papers (total in 2 papers)
Brief communications
A Generalized Khintchine Inequality in Rearrangement Invariant Spaces
S. V. Astashkin Samara State University
Abstract:
Let $X$ be a separable or maximal rearrangement invariant space on $[0,1]$. Necessary and sufficient conditions are found under which the generalized Khintchine inequality
\begin{equation*}
\bigg\|\sum_{k=1}^\infty f_k\bigg\|_{X}\le
C\bigg\|\bigg(\sum_{k=1}^\infty f_k^2\bigg)^{1/2}\bigg\|_X
\end{equation*}
holds for an arbitrary sequence $\{f_k\}_{k=1}^\infty\subset X$ of mean zero independent variables. Moreover, the subspace spanned in a rearrangement invariant space by the
Rademacher system with independent vector coefficients is studied.
Keywords:
Khintchine inequality, rearrangement invariant space, Rademacher system, independent functions, Kruglov property, Boyd indices.
Received: 25.10.2006
Citation:
S. V. Astashkin, “A Generalized Khintchine Inequality in Rearrangement Invariant Spaces”, Funktsional. Anal. i Prilozhen., 42:2 (2008), 78–81; Funct. Anal. Appl., 42:2 (2008), 144–147
Linking options:
https://www.mathnet.ru/eng/faa2905https://doi.org/10.4213/faa2905 https://www.mathnet.ru/eng/faa/v42/i2/p78
|
|