Abstract:
We suggest a new construction of nonlocal representations of the current group. Instead of the Fock space, which is usually used in this situation, we consider the direct integral of countable
tensor products of representations over the trajectories of some stochastic process. The construction substantially uses the invariance of the so-called infinite-dimensional Lebesgue measure.
Keywords:
current group, summable representation, integral of tensor products.
Citation:
A. M. Vershik, M. I. Graev, “Integral Models of Representations of Current Groups”, Funktsional. Anal. i Prilozhen., 42:1 (2008), 22–32; Funct. Anal. Appl., 42:1 (2008), 19–27
\Bibitem{VerGra08}
\by A.~M.~Vershik, M.~I.~Graev
\paper Integral Models of Representations of Current Groups
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 1
\pages 22--32
\mathnet{http://mi.mathnet.ru/faa2887}
\crossref{https://doi.org/10.4213/faa2887}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423975}
\zmath{https://zbmath.org/?q=an:1162.22019}
\elib{https://elibrary.ru/item.asp?id=10441216}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 1
\pages 19--27
\crossref{https://doi.org/10.1007/s10688-008-0002-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255229000002}
\elib{https://elibrary.ru/item.asp?id=14715991}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38849140608}
Linking options:
https://www.mathnet.ru/eng/faa2887
https://doi.org/10.4213/faa2887
https://www.mathnet.ru/eng/faa/v42/i1/p22
This publication is cited in the following 8 articles:
A. M. Vershik, M. I. Graev, “Nonunitary representations of the groups of U(p,q)-currents for q≥p>1”, J. Math. Sci. (N. Y.), 232:2 (2018), 99–120
V. M. Buchstaber, M. I. Gordin, I. A. Ibragimov, V. A. Kaimanovich, A. A. Kirillov, A. A. Lodkin, S. P. Novikov, A. Yu. Okounkov, G. I. Olshanski, F. V. Petrov, Ya. G. Sinai, L. D. Faddeev, S. V. Fomin, N. V. Tsilevich, Yu. V. Yakubovich, “Anatolii Moiseevich Vershik (on his 80th birthday)”, Russian Math. Surveys, 69:1 (2014), 165–179
A. M. Vershik, M. I. Graev, “Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group U(2,2))”, Funct. Anal. Appl., 48:3 (2014), 155–165
A. M. Vershik, M. I. Graev, “Poisson model of the Fock space and representations of current groups”, St. Petersburg Math. J., 23:3 (2012), 459–510
A. M. Vershik, M. I. Graev, “Integral models of representations of the current groups of simple Lie groups”, Russian Math. Surveys, 64:2 (2009), 205–271
A. M. Vershik, M. I. Graev, “Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products”, Funct. Anal. Appl., 42:4 (2008), 279–289
Vershik A.M., “Invariant measures for the continual Cartan subgroup”, J. Funct. Anal., 255:9 (2008), 2661–2682
A. M. Vershik, “Does There Exist a Lebesgue Measure in the Infinite-Dimensional Space?”, Proc. Steklov Inst. Math., 259 (2007), 248–272