Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 1, Pages 1–21
DOI: https://doi.org/10.4213/faa2886
(Mi faa2886)
 

This article is cited in 15 scientific papers (total in 15 papers)

Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices

Yu. M. Berezanskiia, A. A. Mokhon'kob

a Institute of Mathematics, Ukrainian National Academy of Sciences
b National Taras Shevchenko University of Kyiv
References:
Abstract: The following method for integrating the Cauchy problem for a Toda lattice on the half-line is well known: to a solution $u(t)$, $t\in[0,\infty)$, of the problem, one assigns a self-adjoint semi-infinite Jacobi matrix $J(t)$ whose spectral measure $d\rho(\lambda;t)$ undergoes simple evolution in time $t$. The solution of the Cauchy problem goes as follows. One writes out the spectral measure $d\rho(\lambda;0)$ for the initial value $u(0)$ of the solution and the corresponding Jacobi matrix $J(0)$ and then computes the time evolution $d\rho(\lambda;t)$ of this measure. Using the solution of the inverse spectral problem, one reconstructs the Jacobi matrix $J(t)$ from $d\rho(\lambda;t)$ and hence finds the desired solution $u(t)$.
In the present paper, this approach is generalized to the case in which the role of $J(t)$ is played by a block Jacobi matrix generating a normal operator in the orthogonal sum of finite-dimensional spaces with spectral measure $d\rho(\zeta;t)$ defined on the complex plane. Some recent results on the spectral theory of these normal operators permit one to use the integration method described above for a rather wide class of differential-difference nonlinear equations replacing the Toda lattice.
Keywords: block Jacobi matrix, generalized eigenvector, spectral representation, Toda lattice.
Received: 29.05.2007
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 1, Pages 1–18
DOI: https://doi.org/10.1007/s10688-008-0001-y
Bibliographic databases:
Document Type: Article
UDC: 517.53+517.91
Language: Russian
Citation: Yu. M. Berezanskii, A. A. Mokhon'ko, “Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices”, Funktsional. Anal. i Prilozhen., 42:1 (2008), 1–21; Funct. Anal. Appl., 42:1 (2008), 1–18
Citation in format AMSBIB
\Bibitem{BerMok08}
\by Yu.~M.~Berezanskii, A.~A.~Mokhon'ko
\paper Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 1
\pages 1--21
\mathnet{http://mi.mathnet.ru/faa2886}
\crossref{https://doi.org/10.4213/faa2886}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423974}
\zmath{https://zbmath.org/?q=an:1168.34038}
\elib{https://elibrary.ru/item.asp?id=10441215}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 1
\pages 1--18
\crossref{https://doi.org/10.1007/s10688-008-0001-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255229000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41549124040}
Linking options:
  • https://www.mathnet.ru/eng/faa2886
  • https://doi.org/10.4213/faa2886
  • https://www.mathnet.ru/eng/faa/v42/i1/p1
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:868
    Full-text PDF :309
    References:82
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024