Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 1, Pages 1–21
DOI: https://doi.org/10.4213/faa2886
(Mi faa2886)
 

This article is cited in 15 scientific papers (total in 15 papers)

Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices

Yu. M. Berezanskiia, A. A. Mokhon'kob

a Institute of Mathematics, Ukrainian National Academy of Sciences
b National Taras Shevchenko University of Kyiv
References:
Abstract: The following method for integrating the Cauchy problem for a Toda lattice on the half-line is well known: to a solution u(t), t[0,), of the problem, one assigns a self-adjoint semi-infinite Jacobi matrix J(t) whose spectral measure dρ(λ;t) undergoes simple evolution in time t. The solution of the Cauchy problem goes as follows. One writes out the spectral measure dρ(λ;0) for the initial value u(0) of the solution and the corresponding Jacobi matrix J(0) and then computes the time evolution dρ(λ;t) of this measure. Using the solution of the inverse spectral problem, one reconstructs the Jacobi matrix J(t) from dρ(λ;t) and hence finds the desired solution u(t).
In the present paper, this approach is generalized to the case in which the role of J(t) is played by a block Jacobi matrix generating a normal operator in the orthogonal sum of finite-dimensional spaces with spectral measure dρ(ζ;t) defined on the complex plane. Some recent results on the spectral theory of these normal operators permit one to use the integration method described above for a rather wide class of differential-difference nonlinear equations replacing the Toda lattice.
Keywords: block Jacobi matrix, generalized eigenvector, spectral representation, Toda lattice.
Received: 29.05.2007
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 1, Pages 1–18
DOI: https://doi.org/10.1007/s10688-008-0001-y
Bibliographic databases:
Document Type: Article
UDC: 517.53+517.91
Language: Russian
Citation: Yu. M. Berezanskii, A. A. Mokhon'ko, “Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices”, Funktsional. Anal. i Prilozhen., 42:1 (2008), 1–21; Funct. Anal. Appl., 42:1 (2008), 1–18
Citation in format AMSBIB
\Bibitem{BerMok08}
\by Yu.~M.~Berezanskii, A.~A.~Mokhon'ko
\paper Integration of Some Differential-Difference Nonlinear Equations Using the Spectral Theory of Normal Block Jacobi Matrices
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 1
\pages 1--21
\mathnet{http://mi.mathnet.ru/faa2886}
\crossref{https://doi.org/10.4213/faa2886}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423974}
\zmath{https://zbmath.org/?q=an:1168.34038}
\elib{https://elibrary.ru/item.asp?id=10441215}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 1
\pages 1--18
\crossref{https://doi.org/10.1007/s10688-008-0001-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255229000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41549124040}
Linking options:
  • https://www.mathnet.ru/eng/faa2886
  • https://doi.org/10.4213/faa2886
  • https://www.mathnet.ru/eng/faa/v42/i1/p1
  • This publication is cited in the following 15 articles:
    1. B. A. Babajanov, M. M. Ruzmetov, “Solution of the Finite Toda Lattice with Self-Consistent Source”, Lobachevskii J Math, 44:7 (2023), 2587  crossref
    2. Bazar Babajanov, Murod Ruzmetov, Sherzod Sadullaev, NOVEL TRENDS IN RHEOLOGY IX, 2997, NOVEL TRENDS IN RHEOLOGY IX, 2023, 020023  crossref
    3. Yurij M. Berezansky, Mykola E. Dudkin, Operator Theory: Advances and Applications, 294, Jacobi Matrices and the Moment Problem, 2023, 1  crossref
    4. Yurij M. Berezansky, Mykola E. Dudkin, Operator Theory: Advances and Applications, 294, Jacobi Matrices and the Moment Problem, 2023, 413  crossref
    5. Dudkin M.E. Kozak V.I., “Jacobi-Type Block Matrices Corresponding to the Two-Dimensional Moment Problem: Polynomials of the Second Kind and Weyl Function”, Ukr. Math. J., 68:4 (2016), 557–569  crossref  mathscinet  isi  scopus
    6. Gekhtman M., “Inverse Moment Problem For Non-Abelian Coxeter Double Bruhat Cells”, Methods Funct. Anal. Topol., 22:2 (2016), 117–136  mathscinet  zmath  isi
    7. Sofiane Bouarroudj, Pavel Grozman, Alexei Lebedev, Dimitry Leites, Irina Shchepochkina, “New Simple Lie Algebras in Characteristic 2”, Int Math Res Notices, 2016:18 (2016), 5695  crossref
    8. Guseinov G.Sh., “A Class of Complex Solutions to the Finite Toda Lattice”, Math. Comput. Model., 57:5-6 (2013), 1190–1202  crossref  mathscinet  isi
    9. Huseynov A., Guseinov G.Sh., “Solution of the Finite Complex Toda Lattice by the Method of Inverse Spectral Problem”, Appl. Math. Comput., 219:10 (2013), 5550–5563  crossref  mathscinet  zmath  isi  elib
    10. Aydin Huseynov, Gusein Sh. Guseinov, Dynamical Systems and Methods, 2012, 323  crossref
    11. Berezansky Yu.M., “Spectral Theory of the Infinite Block Jacobi Type Normal Matrices, Orthogonal Polynomials on a Complex Domain, and the Complex Moment Problem”, Modern Analysis and Applications: Mark Krein Centenary Conference, Operator Theory Advances and Applications, 191, 2009, 37–50  mathscinet  zmath  isi
    12. Mokhonko O., “Nonisospectral Flows on Self-adjoint, Unitary and Normal Semi-infinite Block Jacobi Matrices”, Modern Analysis and Applications: Mark Krein Centenary Conference, Operator Theory Advances and Applications, 190, 2009, 387–395  mathscinet  zmath  isi
    13. Yu.M. Berezansky, Modern Analysis and Applications, 2009, 37  crossref
    14. Oleksii Mokhonko, Modern Analysis and Applications, 2009, 387  crossref
    15. Berezans'kyi Yu.M., “Integration of the modified double-infinite Toda lattice with the help of inverse spectral problem”, Ukrainian Math. J., 60:4 (2008), 521–539  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:922
    Full-text PDF :334
    References:100
    First page:16
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025