Abstract:
In the spaces Lp of vector functions on a closed interval, weighted shift operators B generated by diffeomorphisms of the interval are considered. The notion of coherent local hyperbolicity of the associated linear extension is introduced, and it is established that the closedness of the range of the operator I−B is equivalent to coherent local hyperbolicity. On the basis of this result, the description of some essential spectra of the operator B is given.
Keywords:
weighted shift operator, essential spectrum, coherent local hyperbolicity.
Citation:
A. B. Antonevich, “Coherent Local Hyperbolicity of a Linear Extension and the Essential Spectra of a Weighted Shift Operator on a Closed Interval”, Funktsional. Anal. i Prilozhen., 39:1 (2005), 11–26; Funct. Anal. Appl., 39:1 (2005), 9–20
\Bibitem{Ant05}
\by A.~B.~Antonevich
\paper Coherent Local Hyperbolicity of a Linear Extension and the Essential Spectra of a Weighted Shift Operator on a Closed Interval
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 1
\pages 11--26
\mathnet{http://mi.mathnet.ru/faa28}
\crossref{https://doi.org/10.4213/faa28}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2132436}
\zmath{https://zbmath.org/?q=an:1096.47032}
\elib{https://elibrary.ru/item.asp?id=13491902}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 1
\pages 9--20
\crossref{https://doi.org/10.1007/s10688-005-0013-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229257700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18144403833}
Linking options:
https://www.mathnet.ru/eng/faa28
https://doi.org/10.4213/faa28
https://www.mathnet.ru/eng/faa/v39/i1/p11
This publication is cited in the following 12 articles:
A. B. Antonevich, D. I. Kravtsov, “O postanovke kraevykh zadach dlya dvuchlennykh funktsionalnykh uravnenii”, SMFN, 70, no. 3, Rossiiskii universitet druzhby narodov, M., 2024, 343–355
A. B. Antonevich, “Pravostoronnyaya obratimost dvuchlennykh funktsionalnykh operatorov i graduirovannaya dikhotomiya”, Posvyaschaetsya pamyati professora N.D. Kopachevskogo, SMFN, 67, no. 2, Rossiiskii universitet druzhby narodov, M., 2021, 208–236
A. B. Antonevich, A. A. Ahmatova, Ju. Makowska, “Maps with separable dynamics and the spectral properties of the operators generated by them”, Sb. Math., 206:3 (2015), 341–369
Ćemal B. Dolićanin, Anatolij B. Antonevich, Dynamical Systems Generated by Linear Maps, 2014, 185
A. B. Antonevich, E. V. Panteleeva, “Pravostoronnie rezolventy diskretnykh operatorov vzveshennogo sdviga s matrichnymi vesami”, PFMT, 2013, no. 3(16), 45–54
E. V. Panteleeva, “Lokalnye svoistva podmnozhestv, ustoichivykh otnositelno lineinogo rasshireniya”, Tr. In-ta matem., 21:2 (2013), 142–153
Antonevich A.B., Lo S.A., “Polufredgolmovy zadachi o periodicheskikh resheniyakh funktsionalno-differentsialnykh uravnenii neitralnogo tipa”, Differentsialnye uravneniya, 47:10 (2011), 1371–1382
A. B. Antonevich, S. A. Lo, “Semi-Fredholm problems on periodic solutions of functional-differential equations of neutral type”, Diff Equat, 47:10 (2011), 1385
Makowska J., “One-Side Invertibility of the Weighted Shift Operators”, XXIX Workshop on Geometric Methods in Physics, AIP Conference Proceedings, 1307, 2010, 101–105
A. B. Antonevich, Yu. Yakubovska, “Weighted translation operators generated by mappings with saddle points: a model class”, Journal of Mathematical Sciences, 164:4 (2010), 497–517
Antonevich, A, “On Spectral Properties of Weighted Shift Operators Generated by Mappings with Saddle Points”, Complex Analysis and Operator Theory, 2:2 (2008), 215
Makowska J., “On spectral properties of weighted shift operators generated by mappings with saddle points in L-p”, Geometric Methods in Physics, AIP Conference Proceedings, 1079, 2008, 96–101