Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 1, Pages 1–10
DOI: https://doi.org/10.4213/faa27
(Mi faa27)
 

This article is cited in 11 scientific papers (total in 11 papers)

The Geometric Structure of Chebyshev Sets in $\ell^\infty(n)$

A. R. Alimov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A subset $M$ of a normed linear space $X$ is called a Chebyshev set if each $x\in X$ has a unique nearest point in $M$. We characterize Chebyshev sets in $\ell^\infty(n)$ in geometric terms and study the approximative properties of sections of Chebyshev sets, suns, and strict suns in $\ell^\infty(n)$ by coordinate subspaces.
Keywords: Chebyshev set, sun, strict sun, best approximation.
Received: 27.02.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 1, Pages 1–8
DOI: https://doi.org/10.1007/s10688-005-0012-x
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
Language: Russian
Citation: A. R. Alimov, “The Geometric Structure of Chebyshev Sets in $\ell^\infty(n)$”, Funktsional. Anal. i Prilozhen., 39:1 (2005), 1–10; Funct. Anal. Appl., 39:1 (2005), 1–8
Citation in format AMSBIB
\Bibitem{Ali05}
\by A.~R.~Alimov
\paper The Geometric Structure of Chebyshev Sets in $\ell^\infty(n)$
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 1
\pages 1--10
\mathnet{http://mi.mathnet.ru/faa27}
\crossref{https://doi.org/10.4213/faa27}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2132435}
\zmath{https://zbmath.org/?q=an:1087.41027}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 1
\pages 1--8
\crossref{https://doi.org/10.1007/s10688-005-0012-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229257700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18144399282}
Linking options:
  • https://www.mathnet.ru/eng/faa27
  • https://doi.org/10.4213/faa27
  • https://www.mathnet.ru/eng/faa/v39/i1/p1
  • This publication is cited in the following 11 articles:
    1. K. S. Shklyaev, “Plane sets that are Chebyshev in some norm”, Moscow University Mathematics Bulletin, 76:2 (2021), 69–72  mathnet  crossref  mathscinet  zmath  isi
    2. A. R. Alimov, “Characterization of Sets with Continuous Metric Projection in the Space $\ell^\infty_n$”, Math. Notes, 108:3 (2020), 309–317  mathnet  crossref  crossref  mathscinet  isi  elib
    3. A. R. Alimov, “Geometric construction of Chebyshev sets and suns in three-dimensional spaces with cylindrical norm”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 75:5 (2020), 209–215  mathnet  crossref  mathscinet  zmath  isi  elib
    4. A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730  mathnet  crossref  mathscinet
    6. A. R. Alimov, “Local solarity of suns in normed linear spaces”, J. Math. Sci., 197:4 (2014), 447–454  mathnet  crossref
    7. A. R. Alimov, “Preservation of approximative properties of subsets of Chebyshev sets and suns in $\ell^\infty (n)$”, Izv. Math., 70:5 (2006), 857–866  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sb. Math., 197:9 (2006), 1259–1272  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. A. R. Alimov, “Geometric construction of Chebyshev sets in the spaces $\ell^\infty(n)$, $c_0$ and $c$”, Russian Math. Surveys, 60:3 (2005), 559–561  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. A. R. Alimov, “Connectedness of suns in the space $c_0$”, Izv. Math., 69:4 (2005), 651–666  mathnet  mathnet  crossref  crossref  isi  scopus
    11. Alimov, AR, “Characterisations of Chebyshev sets in c(0)”, Journal of Approximation Theory, 129:2 (2004), 217  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:740
    Full-text PDF :358
    References:117
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025