Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2001, Volume 35, Issue 3, Pages 19–27
DOI: https://doi.org/10.4213/faa255
(Mi faa255)
 

This article is cited in 36 scientific papers (total in 36 papers)

On the Structure of the Complements of Chebyshev Sets

A. R. Alimov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A set is called a Chebyshev set if it contains a unique best approximation element. We study the structure of the complements of Chebyshev sets, in particular considering the following question: How many connected components can the complement of a Chebyshev set in a finite-dimensional normed or nonsymmetrically normed linear space have? We extend some results from [A. R. Alimov, East J. Approx, 2, No. 2, 215–232 (1996)]. A. L. Brown's characterization of four-dimensional normed linear spaces in which every Chebyshev set is convex is extended to the nonsymmetric setting. A characterization of finite-dimensional spaces that contain a strict sun whose complement has a given number of connected components is established.
Received: 11.05.2000
English version:
Functional Analysis and Its Applications, 2001, Volume 35, Issue 3, Pages 176–182
DOI: https://doi.org/10.1023/A:1012370610709
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
Language: Russian
Citation: A. R. Alimov, “On the Structure of the Complements of Chebyshev Sets”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 19–27; Funct. Anal. Appl., 35:3 (2001), 176–182
Citation in format AMSBIB
\Bibitem{Ali01}
\by A.~R.~Alimov
\paper On the Structure of the Complements of Chebyshev Sets
\jour Funktsional. Anal. i Prilozhen.
\yr 2001
\vol 35
\issue 3
\pages 19--27
\mathnet{http://mi.mathnet.ru/faa255}
\crossref{https://doi.org/10.4213/faa255}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1864985}
\zmath{https://zbmath.org/?q=an:1099.41501}
\elib{https://elibrary.ru/item.asp?id=5023605}
\transl
\jour Funct. Anal. Appl.
\yr 2001
\vol 35
\issue 3
\pages 176--182
\crossref{https://doi.org/10.1023/A:1012370610709}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172598500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035734769}
Linking options:
  • https://www.mathnet.ru/eng/faa255
  • https://doi.org/10.4213/faa255
  • https://www.mathnet.ru/eng/faa/v35/i3/p19
  • This publication is cited in the following 36 articles:
    1. I. G. Tsar'kov, “Uniformly convex cone spaces and properties of convex sets in them”, Math. Notes, 116:4 (2024), 831–840  mathnet  crossref  crossref
    2. I. G. Tsar'kov, “Properties of Sets in Asymmetric Spaces”, Lobachevskii J Math, 45:6 (2024), 2957  crossref
    3. I. G. Tsar'kov, “Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces”, Izv. Math., 87:4 (2023), 835–851  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. I.G. Tsar'kov, “Connectedness in asymmetric spaces”, Journal of Mathematical Analysis and Applications, 527:1 (2023), 127381  crossref
    5. I. G. Tsar'kov, “Reflexivity for Spaces With Extended Norm”, Russ. J. Math. Phys., 30:3 (2023), 399  crossref
    6. A. R. Alimov, “On local properties of spaces implying monotone path-connectedness of suns”, J Anal, 31:3 (2023), 2287  crossref
    7. A. R. Alimov, “Approximative Solar Properties of Sets and Local Geometry of the Unit Sphere”, Lobachevskii J Math, 44:12 (2023), 5148  crossref
    8. I. G. Tsar'kov, “Continuity of a Metric Function and Projection in Asymmetric Spaces”, Math. Notes, 111:4 (2022), 616–623  mathnet  crossref  crossref
    9. I. G. Tsar'kov, “Uniformly and locally convex asymmetric spaces”, Sb. Math., 213:10 (2022), 1444–1469  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    10. K. S. Shklyaev, “The convex hull and the Carathéodory number of a set in terms of the metric projection operator”, Sb. Math., 213:10 (2022), 1470–1486  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. I. G. Tsar'kov, “Density of the Points of Continuity of the Metric Function and Projection in Asymmetric Spaces”, Math. Notes, 112:6 (2022), 1017–1024  mathnet  crossref  crossref
    12. I. G. Tsarkov, “Uniformly and Locally Convex Asymmetric Spaces”, Russ. J. Math. Phys., 29:1 (2022), 141  crossref
    13. I. G. Tsar'kov, “Uniform Convexity in Nonsymmetric Spaces”, Math. Notes, 110:5 (2021), 773–783  mathnet  crossref  crossref  isi  elib
    14. Alimov A.R., Tsar'kov I.G., “Full Length Article Smoothness of Subspace Sections of the Unit Balls of C(Q) and l-1”, J. Approx. Theory, 265 (2021), 105552  crossref  mathscinet  isi  scopus
    15. A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:4(2) (2014), 489–497  mathnet  crossref  elib
    17. A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730  mathnet  crossref  mathscinet
    18. A. R. Alimov, “Monotone path-connectedness of R-weakly convex sets in spaces with linear ball embedding”, Eurasian Math. J., 3:2 (2012), 21–30  mathnet  mathscinet  zmath
    19. Alegre C., Romaguera S., Veeramani P., “The Uniform Boundedness Theorem in Asymmetric Normed Spaces”, Abstract Appl. Anal., 2012, 809626  crossref  mathscinet  zmath  isi  elib  scopus
    20. Wen Li, Du Zou, Deyi Li, Zhaoyuan Zhang, International Conference on Information Science and Technology, 2011, 398  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:682
    Full-text PDF :284
    References:117
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025