Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2001, Volume 35, Issue 3, Pages 1–18
DOI: https://doi.org/10.4213/faa254
(Mi faa254)
 

This article is cited in 14 scientific papers (total in 14 papers)

Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions

M. S. Agranovich

Moscow State Institute of Electronics and Mathematics
References:
Abstract: We consider a spectral boundary value problem in a $3$-dimensional bounded domain for the Dirac system that describes the behavior of a relativistic particle in an electromagnetic field. The spectral parameter is contained in a local boundary condition. We prove that the eigenvalues of the problem have finite multiplicities and two points of accumulation, zero and infinity and indicate the asymptotic behavior of the corresponding series of eigenvalues. We also show the existence of an orthonormal basis on the boundary consisting of two-dimensional parts of the four-dimensional eigenfunctions.
Received: 05.02.2001
English version:
Functional Analysis and Its Applications, 2001, Volume 35, Issue 3, Pages 161–175
DOI: https://doi.org/10.1023/A:1012368826639
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: M. S. Agranovich, “Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 1–18; Funct. Anal. Appl., 35:3 (2001), 161–175
Citation in format AMSBIB
\Bibitem{Agr01}
\by M.~S.~Agranovich
\paper Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions
\jour Funktsional. Anal. i Prilozhen.
\yr 2001
\vol 35
\issue 3
\pages 1--18
\mathnet{http://mi.mathnet.ru/faa254}
\crossref{https://doi.org/10.4213/faa254}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1864984}
\zmath{https://zbmath.org/?q=an:1035.81017}
\transl
\jour Funct. Anal. Appl.
\yr 2001
\vol 35
\issue 3
\pages 161--175
\crossref{https://doi.org/10.1023/A:1012368826639}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172598500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035734130}
Linking options:
  • https://www.mathnet.ru/eng/faa254
  • https://doi.org/10.4213/faa254
  • https://www.mathnet.ru/eng/faa/v35/i3/p1
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:470
    Full-text PDF :257
    References:63
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025