Abstract:
A model spectral problem of the form −iεy″+xy=λy on the finite interval [−1,1] with the Dirichlet boundary conditions is considered. Here λ is the spectral parameter and ε is positive. The behavior of the spectrum of this problem as ε→0 is completely investigated. The limit curves are found to which the eigenvalues concentrate and the counting eigenvalue functions along these curves are obtained.
Keywords:
the Airy function, Couette flow, quasiclassical eigenvalue formulas.
Citation:
A. V. D'yachenko, A. A. Shkalikov, “On a Model Problem for the Orr–Sommerfeld Equation with Linear Profile”, Funktsional. Anal. i Prilozhen., 36:3 (2002), 71–75; Funct. Anal. Appl., 36:3 (2002), 228–232
\Bibitem{DyaShk02}
\by A.~V.~D'yachenko, A.~A.~Shkalikov
\paper On a Model Problem for the Orr--Sommerfeld Equation with Linear Profile
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 3
\pages 71--75
\mathnet{http://mi.mathnet.ru/faa208}
\crossref{https://doi.org/10.4213/faa208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1935907}
\zmath{https://zbmath.org/?q=an:1036.34094}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 3
\pages 228--232
\crossref{https://doi.org/10.1023/A:1020158323673}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178488500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036377197}
Linking options:
https://www.mathnet.ru/eng/faa208
https://doi.org/10.4213/faa208
https://www.mathnet.ru/eng/faa/v36/i3/p71
This publication is cited in the following 15 articles:
D.I. Borisov, D.M. Polyakov, “Uniform Spectral Asymptotics for a Schrödinger Operator on a Segment with Delta-Interaction”, Russ. J. Math. Phys., 31:2 (2024), 149
D. I. Borisov, D. M. Polyakov, “Uniform asymptotics for eigenvalues of model Schrödinger operator with small translation”, Ufa Math. J., 16:3 (2024), 1–20
Shafarevich A., “Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-Selfadjoint Operators”, Formal and Analytic Solutions of Diff. Equations, Springer Proceedings in Mathematics & Statistics, 256, eds. Filipuk G., Lastra A., Michalik S., Springer, 2018, 177–187
A. M. Savchuk, A. A. Shkalikov, “Spectral Properties of the Complex Airy Operator on the Half-Line”, Funct. Anal. Appl., 51:1 (2017), 66–79
D. V. Nekhaev, A. I. Shafarevich, “A quasiclassical limit of the spectrum of a Schrödinger operator with complex periodic potential”, Sb. Math., 208:10 (2017), 1535–1556
Kh. K. Ishkin, “Localization criterion for the spectrum of the Sturm–Liouville operator on a curve”, St. Petersburg Math. J., 28:1 (2017), 37–63
A. I. Esina, A. I. Shafarevich, “Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution”, Math. Notes, 95:3 (2014), 374–387
Esina A.I., Shafarevich A.I., “Analogs of Bohr-Sommerfeld-Maslov Quantization Conditions on Riemann Surfaces and Spectral Series of Nonself-Adjoint Operators”, Russ. J. Math. Phys., 20:2 (2013), 172–181
Ortiz de Zarate J.M., Sengers J.V., “Hydrodynamic Fluctuations in Laminar Fluid Flow. I. Fluctuating Orr-Sommerfeld Equation”, J Stat Phys, 144:4 (2011), 774–792
A. I. Esina, A. I. Shafarevich, “Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential”, Math. Notes, 88:2 (2010), 209–227
Malevich, AE, “Couette flow in channels with wavy walls”, Acta Mechanica, 197:3–4 (2008), 247
de Zarate, JMO, “Transverse-velocity fluctuations in a liquid under steady shear”, Physical Review E, 77:2 (2008), 026306
Gunther, U, “MHD alpha(2)-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator”, Journal of Mathematical Physics, 46:6 (2005), 063504
A. A. Shkalikov, “Spectral Portraits of the Orr–Sommerfeld Operator with Large Reynolds Numbers”, Journal of Mathematical Sciences, 124:6 (2004), 5417–5441
S. N. Tumanov, A. A. Shkalikov, “On the Spectrum Localization of the Orr–Sommerfeld Problem for Large Reynolds Numbers”, Math. Notes, 72:4 (2002), 519–526