Abstract:
For a Gibbs measure on the configuration space of a finite spin lattice system, we find (in terms of entropy) the Hausdorff dimension of the set of generic points. Using this result, we evaluate the Hausdorff dimension of level sets for Birkhoff ergodic averages of some continuous functions on the configuration space.
Citation:
B. M. Gurevich, A. A. Tempel'man, “Hausdorff Dimension of the Set of Generic Points for Gibbs Measures”, Funktsional. Anal. i Prilozhen., 36:3 (2002), 68–71; Funct. Anal. Appl., 36:3 (2002), 225–227
\Bibitem{GurTem02}
\by B.~M.~Gurevich, A.~A.~Tempel'man
\paper Hausdorff Dimension of the Set of Generic Points for Gibbs Measures
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 3
\pages 68--71
\mathnet{http://mi.mathnet.ru/faa207}
\crossref{https://doi.org/10.4213/faa207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1935906}
\zmath{https://zbmath.org/?q=an:1026.28011}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 3
\pages 225--227
\crossref{https://doi.org/10.1023/A:1020106306834}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178488500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036374122}
Linking options:
https://www.mathnet.ru/eng/faa207
https://doi.org/10.4213/faa207
https://www.mathnet.ru/eng/faa/v36/i3/p68
This publication is cited in the following 4 articles:
Kleptsyn V., Ryzhov D., Minkov S., “Special Ergodic Theorems and Dynamical Large Deviations”, Nonlinearity, 25:11 (2012), 3189–3196
V. A. Kleptsyn, P. S. Saltykov, “On C2-stable effects of intermingled basins of attractors in classes of boundary-preserving maps”, Trans. Moscow Math. Soc., 72 (2011), 193–217
Gurevich, BM, “Markov approximation of homogeneous lattice random fields”, Probability Theory and Related Fields, 131:4 (2005), 519
Gurevich, BM, “Hausdorff dimension of sets of generic points for Gibbs measures”, Journal of Statistical Physics, 108:5–6 (2002), 1281