Abstract:
A Hamiltonian describing four bosons that move on a lattice and interact by means of pair zero-range attractive potentials is considered. A stronger version of the Hunziker–Van Vinter–Zhislin theorem on the essential spectrum is established. It is proved that the set of eigenvalues lying to the left of the essential spectrum is finite for any interaction energy of two bosons and is empty if this energy is sufficiently small.
Keywords:
Schrödinger equation, boson, Faddeev integral equation.
Citation:
S. A. Albeverio, S. N. Lakaev, Zh. I. Abdullaev, “On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schrödinger Operator”, Funktsional. Anal. i Prilozhen., 36:3 (2002), 56–60; Funct. Anal. Appl., 36:3 (2002), 212–216
\Bibitem{AlbLakAbd02}
\by S.~A.~Albeverio, S.~N.~Lakaev, Zh.~I.~Abdullaev
\paper On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schr\"odinger Operator
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 3
\pages 56--60
\mathnet{http://mi.mathnet.ru/faa204}
\crossref{https://doi.org/10.4213/faa204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1935903}
\zmath{https://zbmath.org/?q=an:1083.39016}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 3
\pages 212--216
\crossref{https://doi.org/10.1023/A:1020226321856}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178488500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036377213}
Linking options:
https://www.mathnet.ru/eng/faa204
https://doi.org/10.4213/faa204
https://www.mathnet.ru/eng/faa/v36/i3/p56
This publication is cited in the following 5 articles:
Ulugbek Soatov, Ulugbek Djanizoqov, Rustam Gadayev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 030093
T. H. Rasulov, “Study of the essential spectrum of a matrix operator”, Theoret. and Math. Phys., 164:1 (2010), 883–895
Rasulov T.H., “Investigations of the Essential Spectrum of a Hamiltonian in Fock Space”, Applied Mathematics & Information Sciences, 4:3 (2010), 395–412
M. I. Muminov, “A Hunziker–van Winter–Zhislin theorem for a four-particle lattice Schrödinger operator”, Theoret. and Math. Phys., 148:3 (2006), 1236–1250
S. N. Lakaev, Z. I. Muminov, “The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schrödinger Operator”, Funct. Anal. Appl., 37:3 (2003), 228–231