|
Brief communications
On the Exact $\mathcal{K}$-Monotonicity of Banach Couples
S. V. Astashkin Samara State University
Abstract:
We present necessary and sufficient conditions for a Banach couple formed by the space $L_{\infty}$ and an arbitrary Lorentz space $\Lambda(\varphi)$ to be exact $\mathcal{K}$-monotone. The proof relies on the description of the set of extreme points of a $\mathcal{K}$-orbit for appropriate finite-dimensional couples. As a
consequence of this description, we obtain a generalization of a well-known Markus theorem.
Keywords:
Peetre $\mathcal{K}$-functional, exact $\mathcal{K}$-monotone Banach couple, Lorentz space, rearrangement, extreme point, convex hull.
Received: 19.03.2001
Citation:
S. V. Astashkin, “On the Exact $\mathcal{K}$-Monotonicity of Banach Couples”, Funktsional. Anal. i Prilozhen., 36:3 (2002), 60–63; Funct. Anal. Appl., 36:3 (2002), 217–219
Linking options:
https://www.mathnet.ru/eng/faa205https://doi.org/10.4213/faa205 https://www.mathnet.ru/eng/faa/v36/i3/p60
|
Statistics & downloads: |
Abstract page: | 347 | Full-text PDF : | 190 | References: | 65 |
|