Abstract:
We establish an analog of the Cauchy–Poincaré separation theorem for normal matrices in terms of majorization. A solution to the inverse spectral problem (Borg type result) is also presented. Using this result, we generalize and
extend the Gauss–Lucas theorem about the location of roots of a complex polynomial and of its derivative. The generalization is applied to prove old conjectures due to de Bruijn–Springer and Schoenberg.
Keywords:
normal matrix, majorization, zeros of polynomials, Gauss–Lucas theorem, Cauchy–Poincaré separation theorem, inverse problem.
Citation:
S. M. Malamud, “An Analog of the Poincaré Separation Theorem for Normal Matrices and the Gauss–Lucas Theorem”, Funktsional. Anal. i Prilozhen., 37:3 (2003), 85–88; Funct. Anal. Appl., 37:3 (2003), 232–235
\Bibitem{Mal03}
\by S.~M.~Malamud
\paper An Analog of the Poincar\'e Separation Theorem for Normal Matrices and the Gauss--Lucas Theorem
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 3
\pages 85--88
\mathnet{http://mi.mathnet.ru/faa162}
\crossref{https://doi.org/10.4213/faa162}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2021139}
\zmath{https://zbmath.org/?q=an:1051.15013}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 3
\pages 232--235
\crossref{https://doi.org/10.1023/A:1026044902927}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000189391300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642459831}
Linking options:
https://www.mathnet.ru/eng/faa162
https://doi.org/10.4213/faa162
https://www.mathnet.ru/eng/faa/v37/i3/p85
This publication is cited in the following 10 articles:
Danielyan V S., Guterman A.E., Ng T.W., “Integrability of Diagonalizable Matrices and a Dual Schoenberg Type Inequality”, J. Math. Anal. Appl., 498:2 (2021), 124909
Walter Van Assche, “Majorization results for zeros of orthogonal polynomials”, Proc. Amer. Math. Soc., 145:9 (2017), 3849
Kushel O., Tyaglov M., “Circulants and critical points of polynomials”, J. Math. Anal. Appl., 439:2 (2016), 634–650
T. Kh. Rasulov, “On the number of eigenvalues of a matrix operator”, Siberian Math. J., 52:2 (2011), 316–328
Cheung, WS, “Relationship between the zeros of two polynomials”, Linear Algebra and Its Applications, 432:1 (2010), 107
Yu. Kh. Èshkabilov, “The Efimov effect for a model “three-particle” discrete Schrödinger operator”, Theoret. and Math. Phys., 164:1 (2010), 896–904
Bhat, BVR, “Integrators of matrices”, Linear Algebra and Its Applications, 426:1 (2007), 71
Borcea, J, “Equilibrium points of logarithmic potentials induced by positive charge distributions. I. Generalized de Bruijn-Springer relations”, Transactions of the American Mathematical Society, 359:7 (2007), 3209
Cheung, WS, “A companion matrix approach to the study of zeros and critical points of a polynomial”, Journal of Mathematical Analysis and Applications, 319:2 (2006), 690
Malamud S.M., “Inverse spectral problem for normal matrices and the Gauss-Lucas theorem”, Trans. Amer. Math. Soc., 357:10 (2005), 4043–4064