Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2003, Volume 37, Issue 3, Pages 80–84
DOI: https://doi.org/10.4213/faa161
(Mi faa161)
 

This article is cited in 11 scientific papers (total in 11 papers)

Brief communications

The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schrödinger Operator

S. N. Lakaev, Z. I. Muminov

A. Navoi Samarkand State University
References:
Abstract: The Hamiltonian of a system of three quantum-mechanical particles moving on the three-dimensional lattice $\mathbb{Z}^3$ and interacting via zero-range attractive potentials is considered. The location of the essential and discrete spectra of the three-particle discrete Schrödinger operator $H(K)$, where $K$ is the three-particle quasimomentum, is studied. The absence of eigenvalues below the bottom of the essential spectrum of $H(K)$ for all sufficiently small values of the zero-range attractive potentials is established.
The asymptotics $\lim_{z\to 0-}\frac{N(0,z)}{|\!\log|z||}=\mathcal{U}_0$ is found for the number of eigenvalues $N(0,z)$ lying below $z<0$. Moreover, for all sufficiently small nonzero values of the three-particle quasimomentum $K$, the finiteness of the number $N(K,\tau_{\operatorname{ess}}(K))$ of eigenvalues below the essential spectrum of $H(K)$ is established and the asymptotics of the number $N(K,0)$ of eigenvalues of $H(K)$ below zero is given.
Keywords: three-particle discrete Schrödinger operator, three-particle system, Hamiltonian, zero-range attractive potential, virtual level, eigenvalue, Efimov effect, essential spectrum, asymptotics, lattice.
Received: 27.06.2002
English version:
Functional Analysis and Its Applications, 2003, Volume 37, Issue 3, Pages 228–231
DOI: https://doi.org/10.1023/A:1026092818856
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: S. N. Lakaev, Z. I. Muminov, “The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schrödinger Operator”, Funktsional. Anal. i Prilozhen., 37:3 (2003), 80–84; Funct. Anal. Appl., 37:3 (2003), 228–231
Citation in format AMSBIB
\Bibitem{LakMum03}
\by S.~N.~Lakaev, Z.~I.~Muminov
\paper The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr\"odinger Operator
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 3
\pages 80--84
\mathnet{http://mi.mathnet.ru/faa161}
\crossref{https://doi.org/10.4213/faa161}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2021138}
\zmath{https://zbmath.org/?q=an:1054.81019}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 3
\pages 228--231
\crossref{https://doi.org/10.1023/A:1026092818856}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000189391300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642457320}
Linking options:
  • https://www.mathnet.ru/eng/faa161
  • https://doi.org/10.4213/faa161
  • https://www.mathnet.ru/eng/faa/v37/i3/p80
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :208
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024