Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 1, Pages 14–29
DOI: https://doi.org/10.4213/faa15
(Mi faa15)
 

This article is cited in 14 scientific papers (total in 14 papers)

Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations

O. I. Mokhov

Landau Institute for Theoretical Physics, Centre for Non-linear Studies
References:
Abstract: We solve the problem of describing all nonlocal Hamiltonian operators of hydrodynamic type with flat metrics. This problem is equivalent to describing all flat submanifolds with flat normal bundle in a pseudo-Euclidean space. We prove that every such Hamiltonian operator (or the corresponding submanifold) specifies a pencil of compatible Poisson brackets, generates bihamiltonian integrable hierarchies of hydrodynamic type, and also defines a family of integrals in involution. We prove that there is a natural special class of such Hamiltonian operators (submanifolds) exactly described by the associativity equations of two-dimensional topological quantum field theory (the Witten–Dijkgraaf–Verlinde–Verlinde and Dubrovin equations). We show that each N-dimensional Frobenius manifold can locally be represented by a special flat N-dimensional submanifold with flat normal bundle in a 2N-dimensional pseudo-Euclidean space. This submanifold is uniquely determined up to motions.
Received: 10.05.2004
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 1, Pages 11–23
DOI: https://doi.org/10.1007/s10688-006-0002-7
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: O. I. Mokhov, “Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations”, Funktsional. Anal. i Prilozhen., 40:1 (2006), 14–29; Funct. Anal. Appl., 40:1 (2006), 11–23
Citation in format AMSBIB
\Bibitem{Mok06}
\by O.~I.~Mokhov
\paper Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 1
\pages 14--29
\mathnet{http://mi.mathnet.ru/faa15}
\crossref{https://doi.org/10.4213/faa15}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223246}
\zmath{https://zbmath.org/?q=an:1106.37047}
\elib{https://elibrary.ru/item.asp?id=9200283}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 1
\pages 11--23
\crossref{https://doi.org/10.1007/s10688-006-0002-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236532100002}
\elib{https://elibrary.ru/item.asp?id=13502380}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33644897067}
Linking options:
  • https://www.mathnet.ru/eng/faa15
  • https://doi.org/10.4213/faa15
  • https://www.mathnet.ru/eng/faa/v40/i1/p14
  • This publication is cited in the following 14 articles:
    1. Alexander A. Balinsky, Victor A. Bovdi, Anatolij K. Prykarpatski, “On the Quantum Deformations of Associative Sato Grassmannian Algebras and the Related Matrix Problems”, Symmetry, 16:1 (2023), 54  crossref
    2. Prykarpatski A.K., Balinsky A.A., “On Symmetry Properties of Frobenius Manifolds and Related Lie-Algebraic Structures”, Symmetry-Basel, 13:6 (2021), 979  crossref  isi
    3. Casati M. Lorenzoni P. Vitolo R., “Three Computational Approaches to Weakly Nonlocal Poisson Brackets”, Stud. Appl. Math., 144:4 (2020), 412–448  crossref  mathscinet  isi
    4. Prykarpatski A.K., “On the Solutions to the Witten-Dijkgraaf-Verlinde-Verlinde Associativity Equations and Their Algebraic Properties”, J. Geom. Phys., 134 (2018), 77–83  crossref  mathscinet  zmath  isi
    5. Sheftel M.B., Yazici D., Malykh A.A., “Recursion operators and bi-Hamiltonian structure of the general heavenly equation”, J. Geom. Phys., 116 (2017), 124–139  crossref  mathscinet  zmath  isi  scopus
    6. O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Mikhail B. Sheftel, Devrim Yazici, “Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański”, SIGMA, 12 (2016), 091, 17 pp.  mathnet  crossref
    8. Kath I., Nagy P.-A., “A Splitting Theorem for Higher Order Parallel Immersions”, Proc. Amer. Math. Soc., 140:8 (2012), 2873–2882  crossref  mathscinet  zmath  isi  elib  scopus
    9. O. I. Mokhov, “Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type”, Theoret. and Math. Phys., 167:1 (2011), 403–420  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    10. O. I. Mokhov, “Realization of Frobenius Manifolds as Submanifolds in Pseudo-Euclidean Spaces”, Proc. Steklov Inst. Math., 267 (2009), 217–234  mathnet  crossref  mathscinet  zmath  isi  elib
    11. Sergyeyev A., “Infinite hierarchies of nonlocal symmetries of the Chen-Kontsevich-Schwarz type for the oriented associativity equations”, J. Phys. A, 42:40 (2009), 404017, 15 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    12. O. I. Mokhov, “Duality in a special class of submanifolds and Frobenius manifolds”, Russian Math. Surveys, 63:2 (2008), 378–380  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. O. I. Mokhov, “Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds”, Theoret. and Math. Phys., 152:2 (2007), 1183–1190  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. O. I. Mokhov, “Systems of integrals in involution and associativity equations”, Russian Math. Surveys, 61:3 (2006), 568–570  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:798
    Full-text PDF :326
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025