Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 1, Pages 1–13
DOI: https://doi.org/10.4213/faa14
(Mi faa14)
 

This article is cited in 19 scientific papers (total in 19 papers)

J-Invariants of Plane Curves and Framed Chord Diagrams

S. K. Landoab

a Independent University of Moscow
b Scientific Research Institute for System Studies of RAS
References:
Abstract: Arnold defined J-invariants of general plane curves as functions on classes of such curves that jump in a prescribed way when passing through curves with self-tangency. The coalgebra of framed chord diagrams introduced here has been invented for the description of finite-order J-invariants; it generalizes the Hopf algebra of ordinary chord diagrams, which is used in the description of finite-order knot invariants. The framing of a chord in a diagram is determined by the type of self-tangency: direct self-tangency is labeled by 0, and inverse self-tangency is labeled by 1. The coalgebra of framed chord diagrams unifies the classes of J+- and J-invariants, so far considered separately. The intersection graph of a framed chord diagram determines a homomorphism of this coalgebra into the Hopf algebra of framed graphs, which we also introduce. The combinatorial elements of the above description admit a natural complexification, which gives hints concerning the conjectural complexification of Vassiliev invariants.
Received: 10.09.2004
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 1, Pages 1–10
DOI: https://doi.org/10.1007/s10688-006-0001-8
Bibliographic databases:
Document Type: Article
UDC: 515.1
Language: Russian
Citation: S. K. Lando, “J-Invariants of Plane Curves and Framed Chord Diagrams”, Funktsional. Anal. i Prilozhen., 40:1 (2006), 1–13; Funct. Anal. Appl., 40:1 (2006), 1–10
Citation in format AMSBIB
\Bibitem{Lan06}
\by S.~K.~Lando
\paper $J$-Invariants of Plane Curves and Framed Chord Diagrams
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 1
\pages 1--13
\mathnet{http://mi.mathnet.ru/faa14}
\crossref{https://doi.org/10.4213/faa14}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223245}
\zmath{https://zbmath.org/?q=an:1106.57009}
\elib{https://elibrary.ru/item.asp?id=9200282}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 1
\pages 1--10
\crossref{https://doi.org/10.1007/s10688-006-0001-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236532100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33644903778}
Linking options:
  • https://www.mathnet.ru/eng/faa14
  • https://doi.org/10.4213/faa14
  • https://www.mathnet.ru/eng/faa/v40/i1/p1
  • This publication is cited in the following 19 articles:
    1. N. Kodaneva, S. Lando, “Polynomial graph invariants induced from the gl-weight system”, Journal of Geometry and Physics, 2025, 105421  crossref
    2. V. M. Nezhinskij, “Kindred Diagrams”, Vestnik St.Petersb. Univ.Math., 56:4 (2023), 521  crossref
    3. M. E. Kazarian, S. K. Lando, “Weight systems and invariants of graphs and embedded graphs”, Russian Math. Surveys, 77:5 (2022), 893–942  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. D. P. Ilyutko, I. M. Nikonov, “Weighted systems of framed chord diagrams corresponding to Lie algebras”, Moscow University Mathematics Bulletin, 77:6 (2022), 290–295  mathnet  crossref  crossref  mathscinet  zmath  elib
    5. M. Nenasheva, V. Zhukov, “An extension of Stanley's chromatic symmetric function to binary delta-matroids”, Discrete Mathematics, 344:11 (2021), 112549  crossref
    6. E. S. Krasilnikov, “Invarianty osnaschennykh grafov i ierarkhiya Kadomtseva–Petviashvili”, Funkts. analiz i ego pril., 53:4 (2019), 14–26  mathnet  crossref  mathscinet
    7. E. S. Krasil'nikov, “Invariants of Framed Graphs and the Kadomtsev—Petviashvili Hierarchy”, Funct Anal Its Appl, 53:4 (2019), 250  crossref
    8. V. I. Zhukov, “Lagrangian Subspaces, Delta-Matroids, and Four-Term Relations”, Funct. Anal. Appl., 52:2 (2018), 93–100  mathnet  crossref  crossref  mathscinet  isi  elib
    9. Sergey Lando, Vyacheslav Zhukov, “Delta-matroids and Vassiliev invariants”, Mosc. Math. J., 17:4 (2017), 741–755  mathnet  crossref
    10. Kleptsyn V., Smirnov E., “Ribbon graphs and bialgebra of Lagrangian subspaces”, J. Knot Theory Ramifications, 25:12, SI (2016), 1642006  crossref  mathscinet  zmath  isi  elib  scopus
    11. Ilyutko D.P., Manturov V.O., “a Parity Map of Framed Chord Diagrams”, J. Knot Theory Ramifications, 24:13, SI (2015), 1541006  crossref  mathscinet  zmath  isi  scopus
    12. Karev M., “the Space of Framed Chord Diagrams as a Hopf Module”, J. Knot Theory Ramifications, 24:3 (2015), 1550014  crossref  mathscinet  zmath  isi  elib  scopus
    13. Traldi L., “Binary nullity, Euler circuits and interlace polynomials”, European J. Combin., 32:6 (2011), 944–950  crossref  mathscinet  zmath  isi  elib  scopus
    14. Nowik T., “Order one invariants of spherical curves”, Topology Appl., 158:10 (2011), 1206–1218  crossref  mathscinet  zmath  isi  elib  scopus
    15. Vassily Olegovich Manturov, The Mathematics of Knots, 2011, 169  crossref
    16. Traldi L., “A bracket polynomial for graphs. II. Links, Euler circuits and marked graphs”, J. Knot Theory Ramifications, 19:4 (2010), 547–586  crossref  mathscinet  zmath  isi  elib  scopus
    17. Ilyutko D.P., Manturov V.O., “Introduction to graph-link theory”, J. Knot Theory Ramifications, 18:6 (2009), 791–823  crossref  mathscinet  zmath  isi  elib  scopus
    18. Nowik T., “Complexity of plane and spherical curves”, Duke Math. J., 148:1 (2009), 107–118  crossref  mathscinet  zmath  isi  elib  scopus
    19. Nowik T., “Order one invariants of planar curves”, Adv. Math., 220:2 (2009), 427–440  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:814
    Full-text PDF :474
    References:94
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025