Abstract:
An analog of the quasiregular representation is defined for the group of infinite-order finite upper triangular matrices. It uses G-quasi-invariant measures on some G-spaces. The criterion for the irreducibility and equivalence of the constructed representations is given. This criterion allows us to generalize Ismagilov's conjecture on the irreducibility of an analog of regular representations of infinite-dimensional groups.
Citation:
A. V. Kosyak, “Irreducibility Criterion for Quasiregular Representations of the Group of Finite Upper Triangular Matrices”, Funktsional. Anal. i Prilozhen., 37:1 (2003), 78–81; Funct. Anal. Appl., 37:1 (2003), 65–68
\Bibitem{Kos03}
\by A.~V.~Kosyak
\paper Irreducibility Criterion for Quasiregular Representations of the Group of Finite Upper Triangular Matrices
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 1
\pages 78--81
\mathnet{http://mi.mathnet.ru/faa138}
\crossref{https://doi.org/10.4213/faa138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988011}
\zmath{https://zbmath.org/?q=an:1022.22020}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 1
\pages 65--68
\crossref{https://doi.org/10.1023/A:1022928128185}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182147400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037249308}
Linking options:
https://www.mathnet.ru/eng/faa138
https://doi.org/10.4213/faa138
https://www.mathnet.ru/eng/faa/v37/i1/p78
This publication is cited in the following 6 articles:
Kosyak A., “Criteria of Irreducibility of the Koopman Representations For the Group Gl(0)(2 Infinity, R)”, J. Funct. Anal., 276:1 (2019), 78–126
Kosyak A., “Regular, Quasi-Regular and Induced Representations of Infinite-Dimensional Groups”, Regular, Quasi-Regular and Induced Representations of Infinite-Dimensional Groups, Ems Tracts in Mathematics, 29, European Mathematical Soc, 2018, 1–555
Slowik R., “Real Elements in T-N(K)”, Linear Multilinear Algebra, 61:5 (2013), 667–677
Albeverio S., Kosyak A., “Quasiregular representations of the infinite-dimensional nilpotent group”, J. Funct. Anal., 236:2 (2006), 634–681
Albeverio S., Kosyak A., “Quasiregular representations of the infinite-dimensional Borel group”, J. Funct. Anal., 218:2 (2005), 445–474
A. V. Kosyak, “Quasi-Invariant Measures and Irreducible Representations of the Inductive Limit of Special Linear Groups”, Funct. Anal. Appl., 38:1 (2004), 67–68