Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2003, Volume 37, Issue 1, Pages 73–77
DOI: https://doi.org/10.4213/faa137
(Mi faa137)
 

This article is cited in 16 scientific papers (total in 16 papers)

Brief communications

Homological Dimensions of the Algebra Formed by Entire Functions of Elements of a Nilpotent Lie Algebra

A. A. Dosiev

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
References:
Abstract: This note deals with homological characteristics of algebras of holomorphic functions of noncommuting variables generated by a finite-dimensional nilpotent Lie algebra gg. It is proved that the embedding U(g)OgU(g)Og of the universal enveloping algebra U(g)U(g) of gg into its Arens–Michael hull OgOg is an absolute localization in the sense of Taylor provided that [g,[g,g]]=0[g,[g,g]]=0.
Keywords: Arens–Michael hull, projective homological dimension, nilpotent Lie algebra, localization, Taylor spectrum.
Received: 23.11.2001
English version:
Functional Analysis and Its Applications, 2003, Volume 37, Issue 1, Pages 61–64
DOI: https://doi.org/10.1023/A:1022976011347
Bibliographic databases:
Document Type: Article
UDC: 517.55+517.986
Language: Russian
Citation: A. A. Dosiev, “Homological Dimensions of the Algebra Formed by Entire Functions of Elements of a Nilpotent Lie Algebra”, Funktsional. Anal. i Prilozhen., 37:1 (2003), 73–77; Funct. Anal. Appl., 37:1 (2003), 61–64
Citation in format AMSBIB
\Bibitem{Dos03}
\by A.~A.~Dosiev
\paper Homological Dimensions of the Algebra Formed by Entire Functions of Elements of a Nilpotent Lie Algebra
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 1
\pages 73--77
\mathnet{http://mi.mathnet.ru/faa137}
\crossref{https://doi.org/10.4213/faa137}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988010}
\zmath{https://zbmath.org/?q=an:1029.46065}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 1
\pages 61--64
\crossref{https://doi.org/10.1023/A:1022976011347}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182147400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037248586}
Linking options:
  • https://www.mathnet.ru/eng/faa137
  • https://doi.org/10.4213/faa137
  • https://www.mathnet.ru/eng/faa/v37/i1/p73
  • This publication is cited in the following 16 articles:
    1. Aristov O.Yu., Pirkovskii A.Yu., “Open Embeddings and Pseudoflat Epimorphisms”, J. Math. Anal. Appl., 485:2 (2020), 123817  crossref  mathscinet  isi
    2. Trans. Moscow Math. Soc., 81:1 (2020), 97–114  mathnet  crossref  elib
    3. Pirkovskii A.Yu., “Holomorphic Functions on the Quantum Polydisk and on the Quantum Ball”, J. Noncommutative Geom., 13:3 (2019), 857–886  crossref  mathscinet  isi
    4. Pirkovskii A.Yu., “Holomorphically Finitely Generated Algebras”, J. Noncommutative Geom., 9:1 (2015), 215–264  crossref  mathscinet  zmath  isi  elib  scopus
    5. Pirkovskii A.Yu., “Noncommutative Analogues of Stein Spaces of Finite Embedding Dimension”, Algebraic Methods in Functional Analysis: the Victor Shulman Anniversary Volume, Operator Theory Advances and Applications, 233, ed. Todorov I. Turowska L., Birkhauser Verlag Ag, 2014, 135–153  crossref  mathscinet  zmath  isi  scopus
    6. A. Yu. Pirkovskii, “Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras”, Izv. Math., 76:4 (2012), 702–759  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. A. A. Dosi, “The Taylor spectrum and transversality for a Heisenberg algebra of operators”, Sb. Math., 201:3 (2010), 355–375  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Dosi A., “Formally-radical Functions in Elements of a Nilpotent Lie Algebra and Noncommutative Localizations”, Algebra Colloq, 17, Sp. Iss. 1 (2010), 749–788  crossref  mathscinet  zmath  isi  elib
    9. Dosi A., “Taylor Functional Calculus for Supernilpotent Lie Algebra of Operators”, Journal of Operator Theory, 63:1 (2010), 191–216  mathscinet  zmath  isi
    10. A. A. Dosi, “Non-commutative holomorphic functions in elements of a Lie algebra and the absolute basis problem”, Izv. Math., 73:6 (2009), 1149–1171  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Dosiev, A, “Local left invertibility for operator tuples and noncommutative localizations”, Journal of K-Theory, 4:1 (2009), 163  crossref  mathscinet  zmath  isi  scopus
    12. Dosi, A, “Fr,chet Sheaves and Taylor Spectrum for Supernilpotent Lie Algebra of Operators”, Mediterranean Journal of Mathematics, 6:2 (2009), 181  crossref  mathscinet  zmath  isi  scopus
    13. Dosiev, A, “Quasispectra of solvable Lie algebra homomorphisms into Banach algebras”, Studia Mathematica, 174:1 (2006), 13  crossref  mathscinet  zmath  isi  scopus
    14. Pirkovskii, AY, “Arens-Michael enveloping algebras and analytic smash products”, Proceedings of the American Mathematical Society, 134:9 (2006), 2621  crossref  mathscinet  zmath  isi  scopus
    15. Dosiev, A, “Cartan-Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems”, Journal of Functional Analysis, 230:2 (2006), 446  crossref  mathscinet  zmath  isi  scopus
    16. A. A. Dosiev, “Cohomology of Sheaves of Fréchet Algebras and Spectral Theory”, Funct. Anal. Appl., 39:3 (2005), 225–228  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:556
    Full-text PDF :238
    References:99
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025