Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2003, Volume 37, Issue 1, Pages 25–37
DOI: https://doi.org/10.4213/faa134
(Mi faa134)
 

This article is cited in 5 scientific papers (total in 5 papers)

Witten Solution for the Gelfand–Dikii Hierarchy

S. M. Natanzonab

a M. V. Lomonosov Moscow State University
b Independent University of Moscow
Full-text PDF (175 kB) Citations (5)
References:
Abstract: We derive formulas making it possible to calculate the Taylor expansion coefficients of the string solution for the Gelfand–Dikii hierarchy. According to the Witten conjecture, these coefficients coincide with the Mumford–Morita–Miller intersection numbers (correlators) of stable cohomology classes for the moduli space of $n$-spin bundles on Riemann surfaces with punctures.
Keywords: Gelfand–Dikii hierarchy, KP hierarchy, moduli space, Witten conjecture.
Received: 16.04.2001
English version:
Functional Analysis and Its Applications, 2003, Volume 37, Issue 1, Pages 21–31
DOI: https://doi.org/10.1023/A:1022919926368
Bibliographic databases:
Document Type: Article
UDC: 517.958+512.772.5
Language: Russian
Citation: S. M. Natanzon, “Witten Solution for the Gelfand–Dikii Hierarchy”, Funktsional. Anal. i Prilozhen., 37:1 (2003), 25–37; Funct. Anal. Appl., 37:1 (2003), 21–31
Citation in format AMSBIB
\Bibitem{Nat03}
\by S.~M.~Natanzon
\paper Witten Solution for the Gelfand--Dikii Hierarchy
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 1
\pages 25--37
\mathnet{http://mi.mathnet.ru/faa134}
\crossref{https://doi.org/10.4213/faa134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988007}
\zmath{https://zbmath.org/?q=an:1098.37059}
\elib{https://elibrary.ru/item.asp?id=13436505}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 1
\pages 21--31
\crossref{https://doi.org/10.1023/A:1022919926368}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182147400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037245804}
Linking options:
  • https://www.mathnet.ru/eng/faa134
  • https://doi.org/10.4213/faa134
  • https://www.mathnet.ru/eng/faa/v37/i1/p25
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :280
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024