Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2003, Volume 37, Issue 1, Pages 19–24
DOI: https://doi.org/10.4213/faa133
(Mi faa133)
 

Factorization of Operator Functions in a Hilbert Space

A. M. Gomilko

Institute of Hydromechanics of NAS of Ukraine
References:
Abstract: Let $H$ be a Hilbert space, $L=L(H)$ the algebra of bounded linear operators in $H$, $I$ the identity operator, and $H_\alpha^{+}(\Gamma,L)$ the algebra of operator functions defined on the circle $\Gamma=\{|\zeta|=1\}$, satisfying the Hölder condition with exponent $\alpha\in (0,1)$, ranging in $L$, and admitting holomorphic continuation to the disk $|\lambda|<1$. We show that if $A(\zeta)\in H_\alpha^{+}(\Gamma,L)$ and if, for any $\zeta\in\Gamma$, the point $z=0$ does not belong to the convex hull of the spectrum of $A(\zeta)$, then the factorization
\begin{gather*} A(\lambda)=A_{1,+}(\lambda)(\lambda^k I+\sum_{n=0}^{k-1}\lambda^n B_n) A_{2,+}(\lambda),\qquad|\lambda|\le1,\\ A_{j,+}(\lambda)\in H^{+}_\alpha(\Gamma, L),\quad j=1,2, \quad B_n\in L, \quad k=\operatorname{ind}_\Gamma\!A(\zeta), \end{gather*}
holds, where the operators $A_{j,+}(\lambda)$ are invertible for $|\lambda|\le1$.
Keywords: Hilbert space, convex hull of the spectrum of operator, index of operator function, factorization of operator functions.
Received: 25.03.2002
English version:
Functional Analysis and Its Applications, 2003, Volume 37, Issue 1, Pages 16–20
DOI: https://doi.org/10.1023/A:1022967809530
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. M. Gomilko, “Factorization of Operator Functions in a Hilbert Space”, Funktsional. Anal. i Prilozhen., 37:1 (2003), 19–24; Funct. Anal. Appl., 37:1 (2003), 16–20
Citation in format AMSBIB
\Bibitem{Gom03}
\by A.~M.~Gomilko
\paper Factorization of Operator Functions in a Hilbert Space
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 1
\pages 19--24
\mathnet{http://mi.mathnet.ru/faa133}
\crossref{https://doi.org/10.4213/faa133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988006}
\zmath{https://zbmath.org/?q=an:1053.47008}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 1
\pages 16--20
\crossref{https://doi.org/10.1023/A:1022967809530}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182147400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037245725}
Linking options:
  • https://www.mathnet.ru/eng/faa133
  • https://doi.org/10.4213/faa133
  • https://www.mathnet.ru/eng/faa/v37/i1/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :225
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024