|
Factorization of Operator Functions in a Hilbert Space
A. M. Gomilko Institute of Hydromechanics of NAS of Ukraine
Abstract:
Let $H$ be a Hilbert space, $L=L(H)$ the algebra of bounded linear operators in $H$, $I$ the identity operator, and $H_\alpha^{+}(\Gamma,L)$ the algebra of operator functions defined on the circle $\Gamma=\{|\zeta|=1\}$, satisfying the Hölder condition with exponent $\alpha\in (0,1)$, ranging in $L$, and admitting holomorphic continuation to the disk $|\lambda|<1$. We show that if $A(\zeta)\in H_\alpha^{+}(\Gamma,L)$ and if, for any $\zeta\in\Gamma$, the point $z=0$ does not belong to the convex hull of the spectrum of $A(\zeta)$, then the factorization
\begin{gather*}
A(\lambda)=A_{1,+}(\lambda)(\lambda^k I+\sum_{n=0}^{k-1}\lambda^n B_n)
A_{2,+}(\lambda),\qquad|\lambda|\le1,\\
A_{j,+}(\lambda)\in H^{+}_\alpha(\Gamma, L),\quad j=1,2, \quad B_n\in L, \quad
k=\operatorname{ind}_\Gamma\!A(\zeta),
\end{gather*}
holds, where the operators $A_{j,+}(\lambda)$ are invertible for $|\lambda|\le1$.
Keywords:
Hilbert space, convex hull of the spectrum of operator, index of operator function, factorization of operator functions.
Received: 25.03.2002
Citation:
A. M. Gomilko, “Factorization of Operator Functions in a Hilbert Space”, Funktsional. Anal. i Prilozhen., 37:1 (2003), 19–24; Funct. Anal. Appl., 37:1 (2003), 16–20
Linking options:
https://www.mathnet.ru/eng/faa133https://doi.org/10.4213/faa133 https://www.mathnet.ru/eng/faa/v37/i1/p19
|
|