Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 3, Pages 39–51
DOI: https://doi.org/10.4213/faa116
(Mi faa116)
 

This article is cited in 4 scientific papers (total in 4 papers)

Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators

A. V. Kiselevab, S. N. Nabokob

a Dublin Institute of Technology
b V. A. Fock Institute of Physics, Saint-Petersburg State University
Full-text PDF (228 kB) Citations (4)
References:
Abstract: We consider nonself-adjoint nondissipative trace class additive perturbations $L=A+iV$ of a bounded self-adjoint operator $A$ in a Hilbert space $H$. The main goal is to study the properties of the singular spectral subspace $N_i^0$ of $L$ corresponding to part of the real singular spectrum and playing a special role in spectral theory of nonself-adjoint nondissipative operators.
To some extent, the properties of $N_i^0$ resemble those of the singular spectral subspace of a self-adjoint operator. Namely, we prove that $L$ and the adjoint operator $L^*$ are weakly annihilated by some scalar bounded outer analytic functions if and only if both of them satisfy the condition $N_i^0=H$. This is a generalization of the well-known Cayley identity to nonself-adjoint operators of the above-mentioned class.
Keywords: nonself-adjoint operator, Lagrange optimality principle, functional model, annihilator, almost Hermitian spectrum.
Received: 01.03.2004
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 3, Pages 192–201
DOI: https://doi.org/10.1023/B:FAIA.0000042804.88453.4c
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. V. Kiselev, S. N. Naboko, “Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators”, Funktsional. Anal. i Prilozhen., 38:3 (2004), 39–51; Funct. Anal. Appl., 38:3 (2004), 192–201
Citation in format AMSBIB
\Bibitem{KisNab04}
\by A.~V.~Kiselev, S.~N.~Naboko
\paper Nonself-Adjoint Operators with Almost Hermitian Spectrum: Weak Annihilators
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 3
\pages 39--51
\mathnet{http://mi.mathnet.ru/faa116}
\crossref{https://doi.org/10.4213/faa116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2095133}
\zmath{https://zbmath.org/?q=an:1067.47018}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 3
\pages 192--201
\crossref{https://doi.org/10.1023/B:FAIA.0000042804.88453.4c}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224913700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4644261108}
Linking options:
  • https://www.mathnet.ru/eng/faa116
  • https://doi.org/10.4213/faa116
  • https://www.mathnet.ru/eng/faa/v38/i3/p39
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:942
    Full-text PDF :289
    References:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024