Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 3, Pages 29–38
DOI: https://doi.org/10.4213/faa115
(Mi faa115)
 

This article is cited in 13 scientific papers (total in 13 papers)

Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)

G. A. Kalyabinab

a Image Processing Systems Institute
b Samara Academy of Humanities
References:
Abstract: We solve Tikhomirov's problem on the explicit computation of sharp constants in the Kolmogorov type inequalities
$$ |f^{(k)}(0)|\le A_{n,k}\bigg(\int_0^{+\infty}(|f(x)|^2+|f^{(n)}(x)|^2)\,dx\bigg)^{1/2}. $$
Specifically, we prove that
$$ A_{n,k}=\bigg(\sin\frac{\pi(2k+1)}{2n}\bigg)^{-1/2} \prod_{s=1}^k\operatorname{cot}\frac{\pi s}{2n}\, $$
for all $n\in\{1,2,\dots\}$ and $k\in\{0,\dots,n-1\}$. We establish symmetry and regularity properties of the numbers $A_{n,k}$ and study their asymptotic behavior as $n\to\infty$ for the cases $k=O(n^{2/3})$ and $k/n\to\alpha\in(0,1)$.
Similar problems were previously studied by Gabushin and Taikov.
Keywords: extrapolation with minimal norm, Lagrange optimality principle, inversion of special matrices.
Received: 16.06.2003
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 3, Pages 184–191
DOI: https://doi.org/10.1023/B:FAIA.0000042803.72039.20
Bibliographic databases:
Document Type: Article
UDC: 517.518.26
Language: Russian
Citation: G. A. Kalyabin, “Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)”, Funktsional. Anal. i Prilozhen., 38:3 (2004), 29–38; Funct. Anal. Appl., 38:3 (2004), 184–191
Citation in format AMSBIB
\Bibitem{Kal04}
\by G.~A.~Kalyabin
\paper Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 3
\pages 29--38
\mathnet{http://mi.mathnet.ru/faa115}
\crossref{https://doi.org/10.4213/faa115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2095132}
\zmath{https://zbmath.org/?q=an:1079.41009}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 3
\pages 184--191
\crossref{https://doi.org/10.1023/B:FAIA.0000042803.72039.20}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224913700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4644367883}
Linking options:
  • https://www.mathnet.ru/eng/faa115
  • https://doi.org/10.4213/faa115
  • https://www.mathnet.ru/eng/faa/v38/i3/p29
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:600
    Full-text PDF :222
    References:99
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024